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Abstract

This manuscript describes a neural network-based indoor localization and tracking method.
Most localization technologies rely on GPS signals. However, in an indoor environment,
high-frequency GPS signals are blocked by solid objects, such as walls and buildings. In
this project, a low-cost, neural network-based vision tracking system that does not rely on
GPS is proposed, implemented, and deployed on a smartphone (Nokia 7.2). We use ArUco
code to provide reference positions (landmarks) for the system and use neural networks to
improve the landmark detection rate. To produce smooth tracking results, we also integrate
the inertial measurement unit (IMU)-based tracking and vision-based positioning with the
Kalman filter. Through testing and experimental results, we show that the proposed system
significantly improves the accuracy, anti-interference ability, and real-time performance of
indoor tracking systems.
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Glossary

Computer Vision

Computer vision is the science of how to make machines ”see,” and furthermore, it refers to
the use of cameras and computers instead of the human eye to identify, track and measure
targets and other machine vision, and further do image processing, using the computer pro-
cessing to become more suitable for human eye observation or transmitted to the instrument
to detect the image.

Machine Learning

Machine learning is the study of computer algorithms that improve automatically through
experience and by the use of data.

Neural Network

The field of machine learning and cognitive science is a mathematical or computational model
that mimics the structure and function of biological neural networks (the central nervous
system of animals, especially the brain) to estimate or approximate functions.

ArUco Code

The ArUco code is a reference marker placed on the object or scene being imaged. It is a
binary square with a black background and border that is uniquely identified by the white
pattern generated within it.

Pespective-n-Point(PnP)

The PnP solving algorithm is an algorithm that solves the external camera reference by
minimizing the reprojection error through multiple pairs of 3D and 2D matching points with
known or unknown camera internal reference.

Light of Sight

The straight path between a transmitting antenna (as for radio or television signals) and a
receiving antenna when unobstructed by the horizon.

Field of View (FOV)

FOV is the open observable area a person can see through his or her eyes or via an optical
device.

Inertial measurement unit (IMU)

IMU is an electronic device that measures and reports a body’s specific force, angular rate,
and sometimes the orientation of the body, using a combination of accelerometers, gyro-
scopes, and sometimes magnetometers.
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Kalman Filter

The Kalman filter is an efficient recursive filter (autoregressive filter) that estimates the
state of a dynamic system from a series of incomplete and noise-inclusive measurements.
The Kalman filter considers the joint distribution at each time based on the values of each
measurement at different times and then generates an estimate of the unknown variables,
which is, therefore, more accurate than an estimate based on only a single measurement.

Accelerometer

An accelerometer is a type of sensor that can measure acceleration. It usually consists of
a mass block, a damper, an elastic element, a sensitive element, and a tuning circuit. The
sensor obtains the acceleration value by measuring the inertial force on the mass block during
acceleration, using Newton’s second law.

Gyroscope

The gyroscope, a device used to sense and maintain direction, was designed based on the
theory of angular momentum indestructibility. Once the gyroscope starts to rotate due to
the angular momentum of the wheel, the gyroscope tends to resist the change of direction.
People use it to maintain the direction according to this theory, and the manufactured thing
is called a gyroscope.

Magnetometer

Magnetometer devices convert changes in the magnetic energy of sensitive elements caused
by magnetic fields turn into electrical signals and detect the corresponding physical quantities
in this way.
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1. Introduction

1.1. Overview

The Global Positioning System (GPS) has been used for positioning and navigation since its
invention. The GPS is a navigation system that uses satellites, receivers, and algorithms to
synchronize position, speed, and time data for air, sea, and land travel. Satellites orbiting
the earth send signals to be read and interpreted by a GPS device on or near the earth’s
surface. GPS is a powerful and reliable tool for businesses and organizations in many diverse
industries. Some people who use GPS daily are scientists, pilots, ship captains, and first
responders. Such individuals tend to use GPS information to prepare accurate surveys and
maps, make precise time measurements, track locations or positions, and navigate [1] [2].
Although GPS can provide people with convenient navigation and positioning services, it has
limitation in the indoor environments. GPS signals propagate through waves at frequencies
that do not readily move through solid objects. At the same time, GPS devices rely on a
series of satellites to determine their physical location. When users are using GPS inside
a building, various physical obstacles and potential sources of interference make it difficult
for the device to determine its location accurately. GPS works better when the device has
a clear Line-of-Sight (LOS) to the sky. The more GPS satellites a user’ device can access,
the more accurate the result will be. When indoors, there is usually no direct line between
the satellite signal and the device. The signal will weaken or distort as it travels through
the building to reach the device, and will operate incorrectly. Consequently, this situation
creates a development gap between indoor and outdoor localization systems.

With the popularity of intelligent terminals, indoor positioning technologies such as Wi-
Fi, Bluetooth, Radio frequency identification technology (RFID), and Ultra Wide Wave
Technology (UWB) have emerged. Wi-Fi positioning system (WPS) uses the characteris-
tics of nearby Wi-Fi hotspots and other wireless access points to discover where a device is
located [3] [4]. The disadvantage of Wi-Fi-based indoor positioning technology is that due
to the complex structure of indoor space, there is also a shadowing effect and multi-path
propagation effect during the propagation of radio waves in indoor space. It is challenging to
model radio-frequency signal propagation in an indoor environment. Our proposed method
remains effective in complex indoor environments because we need not receive signals emitted
from a specific source. Bluetooth was concerned with distance rather than exact location.
Originally, Bluetooth was not intended to provide a fixed location like GPS. However, it
was called a geofencing or micro-fencing solution, making it an indoor proximity solution
rather than an indoor location solution [5]. The disadvantage is that a large number of
beacon devices need to be deployed indoors to achieve 1-2 meters of positioning accuracy.
This will increase costs, while our proposed method is very economical as it does not require
additional equipment assistance [6].

The existing indoor localization and tracking systems require either the priori knowledge
of the environment, such as the building plan, the locations of WiFi access points, Bluetooth
beacons, and prebuilt RF fingerprints database, or expensive onboard equipment, such as
3D lidar, depth camera, or omnidirectional camera[7]. Google indoor maps [8], for example,
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can triangulate user’s approximate location (the position where user are standing) in an
indoor shopping mall using the nearby WiFi spots, user device Bluetooth, and user device
built-in GPS. But it is only available in public buildings such as airports, malls, stadiums,
and train stations, as these are shared spaces, and their infrastructure information is publicly
available. However, in practices, indoor positioning is needed not only in public buildings
but also in ordinary buildings. For example, a robot delivers food in a residential building.
To navigate the robot through gate, access elevator, and avoiding obstacles, precise indoor
positioning is necessary. It is challenging to obtain infrastructure information due to security
considerations in residential buildings or even some of the commercial buildings. In contrast,
our proposed method does not require infrastructure environmental information and can me
applied widely in most indoor localization scenarios.

For existing computer vision technology, the method of localization using only vision has
a large amount of image processing leading to poor real-time performance [9][10]. Moreover,
such methods are affected by light and cannot work in poor light conditions. We found that
the traditional vision localization algorithm has poor anti-interference ability and limited
real-time problems. We proposed a deep learning-based vision localization method and thus
designed an indoor localization system based on neural networks and sensor fusion. We
improved the accuracy of vision localization by using neural network-based object detection
and made the system highly efficient by feeding results in real-time.

The vision-based indoor localization is used to extract the information about the three-
dimensional (3D) world from the two-dimensional (2D) images captured by the camera [11].
Discovering the correspondence between 3D points in the real-world environment and their
2D image projections is the most critical and complex step in the process. In our project,
we used the ArUco code to aid localization. The advantage of this marker is that a single
marker provides enough correspondence information to calculate the camera’s pose. Be-
sides, the internal binary encoding of the ArUco code allows the marker to maintain specific
stability in terms of checks and corrections. We used neural networks to improve the accu-
racy of detecting markers under complex conditions such as fast movement and light changes.

In detecting markers, we may encounter situations where we cannot capture the markers
due to the limited view angle of the camera. The sensors that come with mobile phones
can then be used as an alternative localization method when the markers are not detected.
In IMU-based localization, we need to double integrate the measured acceleration values.
When we integrate the accelerations, we also integrate the noise, which causes a drift in the
calculated trajectory. A certain distance exists between each marker in our experimental
setting, creating a gap in detecting two markers. However, the acquisition frequency of the
cell phone sensor is very high, and it can be used to fill this gap. As mentioned earlier, just
using the sensor for localization can lead to an accumulation of errors. Therefore, we also
introduce the Kalman filter to correct this error. The phone’s position obtained by vision
localization is an absolute position that can be a measurement value to update the position
of the phone obtained by using sensor-based localization. Updating the prediction is the
process of the Kalman filter to reduce accumulation errors.
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The whole process of localization is first to detect the marker that appears in each frame
of the video, and the resulting information is the ID of the marker and the 2D coordinates
of each of its corners. Then, using this information and the 3D coordinates of the corners
measured, the 3D coordinates of the camera are obtained by solving the PnP (Perspective-n-
Point) problem. At the same time, the sensors are working. The fusion of the accelerometer
and gyroscope also allows obtaining the current position. Consequently, this result will
be used to fill the gap where no marker is detected. Finally, based on the calculated 3D
coordinates of the device, a 3D trajectory of the device’s movement can be plotted.

1.2. ArUco Code

The ArUco marker was originally developed in 2014 by S. Garrido-Jurado et al [12]. Figure
1 shows the example of ArUco marker. Pose estimation is fundamental in many computer
vision applications: robot navigation, augmented reality, and so on. The process is based on
discovering the correspondence between 3D points in the natural environment and their 2D
image projections. This is often difficult, so synthetic or benchmark markers are often used
to simplify the operation. The use of ArUco markers is usually one of the common ways.
The main advantage of this marker is that a single marker provides enough correspondence
information to obtain the camera pose. Simultaneously, the internal binary encoding of the
notation allows the marker to maintain some stability in terms of error checking and correc-
tion. The black borders speed up the detection of the marker in the image, and the internal
2D encoding uniquely identifies the marker for both error detection and error repair. The
size of the marker determines the size of the internal matrix. We chose the ArUco code to
aid the visual positioning of our system over the more common QR codes for reasons that
can be derived from the comparison below.

Functionality

Type
ArUco code QR code

Information storage
Only simple id numeric

information can be stored
Can store any custom information

Detection difficulty
Detection is simple,

fast, and highly robust
Easy to lose at long distances
and large declination angles

Table 1. Comparison between ArUco code and QR code

In indoor positioning, we do not need to store too much information on the marker but
only have an ID that can distinguish the marker, and the ArUco code satisfies this condition
well. Because it does not store much information, it is less computationally intensive during
detection, which helps to improve the real-time performance of the system.
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Figure 1. The example of ArUco markers

1.3. YOLO

A neural network model for detecting ArUco marker is a object detection model. Object
detection is the most common problem in machine vision. It is a kind of image segmentation
based on the object’s geometric and statistical features, which combines the segmentation
and recognition of the object into one, and its accuracy and real-time is an essential capabil-
ity of the whole system. In recent years, object detection has been widely used in artificial
intelligence, face recognition, unmanned vehicles, and other fields.There exist many kinds
of neural networks for object detection. Among them, the convolutional neural network
(CNN) has become a research hotspot in the field of image recognition, and its weight-
sharing network structure makes it more similar to the biological neural network, reducing
the complexity of the network model and the number of weights. Its advantages are more ap-
parent when the input of the network is a multidimensional image, which enables the image
to be directly used as the input of the network, avoiding the complex feature extraction and
data reconstruction processes in traditional recognition algorithms. The CNN is a multilayer
perceptron designed to recognize two-dimensional shapes. This network structure is highly
invariant to translation, scaling, tilting, or other forms of deformation.[13] YOLO is a object
detection algorithm that uses a separate CNN model.

The YOLO was chosen as the object detection model of this project. The full name of
YOLO is you only look once, referring to the fact that you only need to browse once to
identify the category and location of an object in an image. Because you only need to look
once, YOLO is known as a Region-free method, as opposed to a Region-based method, which
does not need to find the region where the object may exist in advance. That is, a typical
region-based method flows like this: first, the image is analyzed by computer graphics (or
deep learning) to find a number of regions where objects may exist, and these regions are
cropped and placed into an image classifier, which classifies them. Because a region-free
method like YOLO requires only one scan, it is also known as a single-stage model.[14] In
this project, the YOLO model takes real-time frames as input and then outputs the detected
ArUco markers’ location, including the coordinates of the four corners of the markers.
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In general, single-stage detectors tend to be less accurate than tow-stage detectors but are
significantly faster. Suitable for real-time system. The objective of this project is to imple-
ment a real-time indoor positioning and tracking system, so the requirement for detection
speed is very high. Therefore, YOLO algorithm is the best choice for this project. In this
project, we specifically use YOLO version 3 (YOLOV3) [15]. The backbone network used in
YOLOV3 is Darknet-53, which has more network layers, introduces a more advanced resid-
ual network, and replaces max pooling layers with convolutional layers. This will result in
greater accuracy. Section 4. will describe how YOLOV3 is applied to this project.
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2. Software Development Life Cycle Model

2.1. Overview

The software life cycle model refers to the typical practices of the software life cycle that
people have summarized to develop better software. The software life cycle model’s primary
role is to determine the sequence of implementation of individual software development
activities. An appropriate software life cycle model should be selected in the early stages
of software development to achieve the goal of simplifying the software development process
and reducing the difficulty of software development. The software life cycle model can help
developers improve software development efficiency and software quality, reduce software
development costs, monitor and control the software development process, and reduce risk.
Therefore, it is essential to choose the appropriate software life cycle model according to the
specific situation of the software development project[16]. The agile development model is
used in this project.

2.2. Agile Development Model

Agile development is a human-centered, iterative, step-by-step development approach. In
agile development, the build of a software project is sliced into multiple sub-projects, and
the results of each sub-project are tested and have integrated and runnable characteristics.
In other words, a large project is divided into multiple interconnected but also independently
runnable sub-projects and completed separately, with the software continuously in a usable
state during the process.[17]

We chose the agile development model because we can easily cope with the uncertainty
of changing requirements during the development process. Another reason is that with agile
development, we have a clear picture of the progress of the project. In terms of how we
implemented agile development, we divided the whole project into four parts and completed
them one by one. They are vision-based indoor localization, neural network-based indoor
localization, sensor fusion-based indoor localization, and a combination of the three. In
addition to that, Dr. Lei Wang and I have a weekly meeting that allows me to keep him
informed of progress. Based on his feedback, I will adjust the development method for the
next week to achieve our project goals.
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Source: https://orionadvisortech.com/blog/why-were-moving-to-agile-software-development/?print=print

Figure 2. Agile Development Process
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3. Requirements

This project aims to implement a neural network-based indoor visual localization system
that can be instantiated and implemented on an mobile phone. When visual positioning is
not available, i.e., when no marker is detected, this system can also call on the sensors that
come with the Android phone for indoor positioning. Eventually, the device’s movement
trajectory can be drawn in a graph with a 3D coordinate system. We evaluate the perfor-
mance of our proposed system under different environmental conditions. For example, the
light conditions (sufficient light and insufficient light) and movement speed.

3.1. Functional Requirements

The functional requirements of this project can be summarized by the following four tasks:

• This system can calibrate camera.

• This system can detect ArUco markers with neural network.

• This system can use the detected markers to localization mobile device, which is vision-
based localization.

• This system can use inertial sensors to aid vision-based localization.

This project focuses on collecting datasets for training neural networks, training the network,
and implementing it on Android phones. Therefore, it is not the same as a typical user-based
application with no specific user or user operation. Instead, the main work of this project is
to turn the theory of neural network-based indoor visual localization into a working Android
application.

3.2. Non-functional Requirements

We also have non-functional requirements to judging the operations of the system.

1. Reliability.
Reliability is the extent to which the software system consistently performs the specified
functions without failure. Our system needs to ensure that we can still use the IMU
for localization if the marker is not detected rather than crashing.

2. Effectiveness.
Effectiveness indicates a system’s resulting performance in relation to effort. Since our
system needs to detect markers and output the results in real-time, effectiveness is an
essential requirement for our system.
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4. Design

4.1. Overview

The goal of this project is to locate and track a mobile device and to plot the 3D trajectory
of mobile device. The input to this system is the video frame captured by the mobile device,
measured values of inertial sensor, gyroscope and magnetometer, and the output is the 3D
movement trajectory of it. To accomplish the goals of this project, we have divided the
system into five modules. The entire process of this system exhibits in Figure 3. The whole
system is divided into five modules. The first module is the camera calibration. The results
obtained from this module are the intrinsic and extrinsic parameters of the camera. This
result will be used as input for the second module. The second module is to use YOLO to
detect the markers. The detection results are the 2D coordinates of the four corners of the
marker and its unique ID. When the system does not detect the marker, it goes to the third
module, which is IMU-based localization. This module takes the values obtained from the
IMU and fuses them to calculate the displacement of the device. When the system detects
the marker, it goes to the fourth module, which is to use the PnP algorithm to estimate the
device pose. Also, the results obtained in this step are used as input to the Kalman filter in
the third module, which is used to update the results of the sensor fusion calculation. The
main task of the last module is to present the results of the previous calculations and plot a
3D trajectory diagram.

4.2. Camera Calibration

The first module is the camera calibration. In machine vision applications, a geometric
model of camera imaging is required to determine the 3D geometric position of a point on
the surface of a spatial object and its corresponding point in the image. These geometric
model parameters are the camera parameters. In most conditions, these parameters must be
obtained through experiments and calculations, and this process of solving the parameters
(intrinsic, extrinsic and distortion parameters) is called camera calibration [18].

The first step in camera calibration requires converting the world coordinate system to
the camera coordinate system. The world coordinate system (XW , YW , ZW ), also known as
the measurement coordinate system, is a three-dimensional right-angle coordinate system to
which the spatial position of the camera and the object to be measured can be described.
The position of the world coordinate system can be freely determined according to the actual
situation. The camera coordinate system (XC , YC , ZC), also a three-dimensional right-angle
coordinate system, the origin is located at the optical center of the lens, x and y axes are
parallel to the two sides of the phase plane, z-axis for the lens optical axis, and perpendicular
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Figure 3. The entire process of system
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to the image plane. The conversion process is shown in Equation (1).
XC

YC

ZC

1

 =

R t

0 1



XW

YW

ZW

1

 (1)

where R is a 3 × 3 rotation matrix, t is a 3 × 1 translation vector, (XC , YC , ZC)T and
(XW , YW , ZW )T are the homogeneous coordinates of camera coordinate system and world
coordinate system, respectively.

The next step is the conversion of pixel coordinates and image coordinates. As shown
in Figure 4, the pixel coordinate system uov is a two-dimensional right-angle coordinate
system that reflects pixel arrangement in the camera chip. The origin o is located in the
upper left corner of the image, and the u and v axes are parallel to the two sides of the
image plane, respectively. The units of the axes in the pixel coordinate system are pixels.
The pixel coordinate system is not conducive to coordinate transformation, so it is necessary
to establish the image coordinate system XOY. The unit of its coordinate axis is usually
millimeters (mm). The origin is the intersection of the camera optical axis and the phase
plane (called the principal point), which is the center of the image. X-axis and Y-axis are
parallel to the u-axis and v-axis, respectively. Therefore, the two coordinate systems are
translational, i.e., they can be obtained by translation. This conversion can be done by
Equation (2). 

u

v

1

 =


1/dX 0 u0

0 1/dY v0

0 0 1



X

Y

1

 (2)

where, dX, dY are physical dimensions of the pixel in the X and Y-axis directions, respec-
tively. u0 and v0 are the coordinates of the principal point.

Figure 4. Pixel coordinate and image coordinate
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Figure 5. Pinhole imaging principle

Figure 5 illustrates the relationship between any point P in space and its image point p.
The line between P and the camera optical center o is oP, and the intersection of oP and
the image plane p is the projection of the point P in space on the image plane. This process
is perspective projection, as represented by the following matrix:

s


X

Y

1

 =


f 0 0 0

0 f 0 0

0 0 1 0



x

y

z

1

 (3)

where, s is the scale factor (s is not zero), f is the effective focal length (the distance from the
optical center to the image plane). (x, y, z, 1)T is the homogeneous coordinates of the spatial
point P in camera coordinate system xoy, and (X, Y, 1)T is the homogeneous coordinates of
the image point p in the image coordinate system XOY . Combining Equations (1) to (3)

12



we can get the intrinsic and extrinsic parameters of camera.

s


X

Y

1

 =


1/dX 0 u0

0 1/dY v0

0 0 1



f 0 0 0

0 f 0 0

0 0 1 0


R t

0 1



XW

YW

ZW

1



=


ax 0 u0 0

0 ay v0 0

0 0 1 0


R t

0 1



XW

YW

ZW

1

 = M1M2Xw

(4)

where, ax = f/dX, ay = f/dY , are called the scale factors of u and v axes. M1 and M2 are
the intrinsic and extrinsic parameters of camera, respectively.

4.3. YOLO

The second module uses YOLO to detect markers. As we mentioned earlier, YOLO is a
single-stage detector, which is fast and ideal for applications in real-time systems. The fol-
lowing will describe how YOLOV3 is applied to this project.

When a frame is passed into YOLOV3, this image is first resized to 416x416 grids, and
a gray bar is added around the image to precent distortion. YOLOV3 then splits the im-
ages into 13x13, 26x26, and 52x52 grids, which are used to detect large, medium, and small
objects, respectively. Each grid point is responsible for detecting its lower right corner area,
and if the object’s center point falls in a grid, then the object’s position will be determined
by that grid point. In the example given in Figure 6, an image containing the object to
be detected, i.e., the ArUco marker, is input into the YOLOV3 neural network and then
surrounded by gray bars. In this image, the ArUco belongs to a large object, so that a
13× 13 grid image will detect the result.

Since there is no open-source ArUco dataset, we need to collect, process, and label the
dataset ourselves. For the training part of YOLO, we choose to train on Google Colab. The
implementation of these tasks will be described in detail in Section 5..

4.4. Camera Pose Estimation

The two-dimensional coordinates obtained from the detection of the markers will be used
for the estimation of the camera pose. The camera pose estimation is mainly based on the
PnP (Perspective-n-point) algorithm. General conditions for the PnP problem [19]:

• Coordinates of the n 3D reference points in the world coordinate system.
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Figure 6. The training process of YOLOV3
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• Corresponding to these n 3D points, the coordinates of the 2D reference point projected
on the image.

• The intrinsic parameters of the Camera, denoted by M1.

Based on our experimental results (for details, see Section 6.), the EPnP algorithm is of the
highest accuracy among the existing PnP algorithms.

Most non-iterative PnP algorithms will first solve for the depth of the feature point to
obtain the 3D coordinates of it in the camera coordinate system. The EPnP algorithm, on
the other hand, represents the 3D coordinates in the world coordinate system as a weighted
sum of a set of virtual control points. For the general case, the EPnP algorithm requires
the number of control points to be four, and these four control points cannot be coplanar.
Because the camera’s extrinsic parameters are unknown, the coordinates of these four con-
trol points under the camera reference coordinate system are unknown. Furthermore, if we
can solve the coordinates of these four control points under the camera reference coordinate
system, we can calculate the camera’s pose [20].

4.4.1. Control Points and Barycentric Coordinates

In this paper, the superscript w and c are used to denote coordinates in the world and camera
coordinate systems, respectively. Then, the coordinates of the 3D reference points in the
real world frame are pwi , i = 1, ..., n, the coordinates in the camera frame are pci , i = 1, ..., n.
The four control points in the world coordinate system are cwj , j = 1, ..., 4, the coordinates
in the camera reference coordinate system are ccj, j = 1, ..., 4.

The EPnP algorithm expresses the coordinates of the reference point as a weighted sum
of the coordinates of the control point:

pwi =
4∑
j=1

aijc
w
j , with

4∑
j=1

aij = 1 (5)

where the aij are homogeneous barycentric coordinates. They are unique and can easily be
estimated. In the camera coordinate system, the same relationship exists:

pci =
4∑
j=1

aijc
c
j (6)

Assuming that the extrinsic parameters (rotation matrix R and translation vector t) of the
camera are [R, t] then a relationship exists between the virtual control points cwj and ccj:

ccj =
[
R t

]cwj
1

 (7)
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Considering that the EPnP algorithm expresses the reference point coordinates as a weighted
sum of the control point coordinates, then can get:

pci =
[
R t

]pwi
1

 =
[
R t

]∑4
j=1 aijc

w
j

1

 (8)

Further,

pci =
[
R t

]∑4
j=1 aijc

w
j

1

 =
4∑
j=1

aij

[
R t

]cwj
1

 =
4∑
j=1

aijc
c
j (9)

In the above derivation, the important constrain
∑4

j=1 aij = 1 of EPnP on the weight aij is
used. Without this constraint, the above derivation will not hold. Putting the four control
point constraints together yields the following equation:

pwi
1

 = C


ai1

ai2

ai3

ai4

 =

cw1 cw2 cw3 cw4

1 1 1 1



ai1

ai2

ai3

ai4

 (10)

Obviously, [pW
T

i 1]T and [cW
T

j 1]T are both isometric coordinates. The equation (5) in the
reference paper, however, is essentially a linear combination of the isometric coordinates of
3D reference points with the isometric coordinates of the control points. Thus, we also get
barycentric coordinates computed as follows:

ai1

ai2

ai3

ai4

 = C−1

pwi
1

 (11)

4.4.2. Selection of Control Points

A specific method for determining the control points is given in here. The set of 3D reference
pints is PW

i , i = 1, ..., n and the barycentric coordinates of the 3D reference points is chosen
as the first control point:

cw1 =
1

n

n∑
i=1

pwi (12)

This leads to the matrix:

A =


pw

T

1 − cw
T

1

...

pw
T

n − cw
T

1

 (13)
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Donating the characteristic value of ATA as λC,i,i=1,2,3, the corresponding feature vector is
vc,i,i=1,2,3. Thus, the remaining three control points can then be determined by the following
formula:

cwj = cw1 + λ
1
2
c,j−1vc,j−1, j = 2, 3, 4 (14)

4.4.3. Solve for the coordinates of the control point in camera coordinates

ui, i = 1, ..., n is the 2D projection of the reference point pi, i = 1, ..., n, then,

∀i, wi

ui
1

 = KpCi = K

4∑
j=1

aijc
C
j (15)

Substitute cCj = [xCj , y
C
j , z

C
j ]T into the above equation and write K in the form of focal length

fu, fv and optical center (uc, vc), then,

∀i, wi


ui

vi

1

 =


fu 0 uc

0 fv vc

0 0 1


4∑
j=1

aij


xCj

yCj

zCj

 (16)

Two linear equations can be obtained from Equation 16:

4∑
j=1

aijfux
C
j + aij(uc − ui)zCj = 0 (17)

4∑
j=1

aijfvy
C
j + aij(vc − vj)zCj = 0 (18)

Concatenating all n reference points, we can obtain a linear system of equations:

Mx = 0 (19)

where x = [cc1
T , cc2

T , cc3
T , cc4

T ], x is the coordinate of the control point in the camera coordi-
nate system, which is a 12× 1 vector and x is in the right null space of M , or x ∈ ker(M ).
M is a 2n× 12 matrix. Hence,

x =
N∑
i=1

βivi (20)

In the equation above, vi is the N eigenvector corresponding to the N null eigenvalues of M .
For the i-th control point:

cCj =
N∑
k=1

βkv
[i]
K (21)

where v
[i]
k is i-th 3 × 1 sub-vector of eigenvector vk. Then we can obtain vi by computing

the eigenvectors of MTM .

17



The next step is to calculate βi,i=1,...,N . Because the extrinsic parameters of the camera
describe only coordinate transformations and do not change the distance between control
points, thus: ∥∥∥cCi − cCj

∥∥∥2 (22)

∥∥∥∑N
k=1 βkv

[i]
K −

∑N
k=1 βkv

[j]
K

∥∥∥2 =
∥∥∥cCi − cCj

∥∥∥2 (23)

This is a linear equation for βij,i,j=1,...,N .In EPnP algorithm [20], four cases N = 1, 2, 3, 4 are
discussed. When N takes different values, the number of unknowns of the linear equation
are:

• N = 1, the unknowns number is 1

• N = 2, the unknowns number is 3

• N = 3, the unknowns number is 6

• N = 4, the unknowns number is 10

When N = 4, the number of equations is 6 and the number of unknowns is more than the
number of equations. By commutativity of the multiplication, we have

βabβcd = βaβbβcβd = βa′b′βc′d′ (24)

where {a′, b′, c′, d′} represents any permutation of the integers {a, b, c, d}. Then we can reduce
the number of unknowns. For example, if we solve for β11, β12, β13, then we get β23 = β12β13

β11
.

4.4.4. Gauss-Newton Optimization

The objective function of the optimization is:

Error(β) =
∑

(i,js.t.i<j)

(
∥∥∥cCi − cCj

∥∥∥2 − ∥∥∥cWi − cWj

∥∥∥2)2 (25)

4.4.5. Calculating the Camera’s pose

The calculation of the pose of the camera in the EPnP algorithm is as follows.

1. Calculate the coordinates of the control point in the camera reference coordinate sys-
tem.

cci =
N∑
j=1

βkv
[i]
k , i = 1, 2, 3, 4 (26)

2. Calculate the coordinates of the 3D reference point in the camera reference coordinate
system.

pci =
4∑
j=1

aijc
c
j, i = 1, ..., n (27)
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3. Calculate the barycentric coordinates pw0 of pwi , i = 1, ..., n and matrix A:

pw0 =
1

n

n∑
i=1

pwi (28)

A =


pw

T

1 − pw
T

0

...

pw
T

n − pw
T

0

 (29)

4. Calculate the barycentric coordinates pc0 of pci , i = 1, ..., n and matrix B:

pc0 =
1

n

n∑
i=1

pci (30)

B =


pc

T

1 − pc
T

0

...

pc
T

n − pc
T

0

 (31)

5. Calculate H:
H = BTA (32)

6. Calculating the singular value decomposition (SVD) of H:

H = U
∑

V T (33)

7. Calculate the rotation R in the pose:

R = UV T (34)

8. Calculate the translation t in the pose:

t = pc
0 −Rpw

0 (35)

l represents the camera’s position in the real world coordinate system:

l = −R−1t (36)

4.5. Sensor Fusion

The third module, is the IMU-based localization method. This method is used as a replace-
ment when visual localization is not available. As can be seen in Figure 3, when the marker
is not detected, the system uses the IMU measurements to calculate the 3D coordinates of
the mobile device. The sensors used in this system are mainly accelerometer, gyroscope, and
magnetometer, all of which are currently equipped in smartphones. Before we can use the
sensor for localization, we need to convert the phone’s coordinate system.
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4.5.1. Coordinate System Conversion

The acceleration sensor of an Android phone refers to its coordinate system when measuring
acceleration. Therefore, we need to convert the phone’s coordinate system to an inertial, non-
rotating coordinate system, which is the Earth coordinate system. This conversion will make
it possible to hold the Android phone in any orientation and measure the correct acceleration
vectors to calculate the phone’s trajectory in the earth coordinate system. Figure 7 displays
this transformation. This transformation[21] is done with formula (37) as shown below.

Source: https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0174959.g002

Figure 7. The transformation from Phone coordinate to Earth’s


x

y

z

 = Rz(ψ)Ry(θ)Rx(φ)


X

Y

Z

 =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1



cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ




1 0 0

0 cosφ −sinφ

0 sinφ cosφ



X

Y

Z


(37)

Where [X, Y, Z] are the phone’s coordinate system linear accelerations, and Rz, Ry, Rx are
the rotation matrices for each axis in order to rotate the [X, Y, Z] over to earth’s [x, y, x] axes.
The Euler angles (ψ, θ, φ) correspond to the angles about the pitch, roll, and yaw, which are
shown in Figure 8. The difference between the acceleration in the earth coordinate system
(The green line) and the Android phone coordinate system (The gray line) can be seen in
Figure 9. The vertical coordinate in the figure represents the value of the sensor, and the
horizontal coordinate represents the sampling times (we used a sampling rate of 100 Hz).
After the conversion, the Z-axis’s gravity stays near 9.8 meters per second, while the gravity
in the X-axis and Y-axis stays near 0 meters per second. This result is the same as what we
know as common sense.
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Source: https://www.quora.com/How-does-smartphone-sensor-orientation-work

Figure 8. The phone’s axes

Figure 9. Change in sensor values before(orange) and after(green) coordinate system conversion
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4.5.2. Displacement

Acceleration is the rate of change of an object’s velocity. At the same time, velocity is the
rate of change of the position of the same object. In other words, velocity is the derivative
of position, and acceleration is the derivative of velocity. Therefore, the following equation
is available,

~a =
d~v

dt
(38)

~v =
d~s

dt
(39)

Hence,

~a =
d(d~s)

dt2
(40)

The integral is the opposite of the derivative. If the acceleration of an object is known, then
we are able to obtain the position of the object using the double integral. Assuming that
the initial condition is 0, then there is the following equation.

~v =

∫
(~a) dt (41)

~s =

∫
(~v) dt (42)

Hence,

~s =

∫
(

∫
(~a) dt) dt (43)

Where ~v, ~a and ~s are velocity, acceleration and displacement respectively. Therefore, the
displacement in the x-axis is shown in the following equation,

~sx =

∫
(

∫
( ~ax) dt) dt (44)

Similar expression for displacement in y-axis and z-axis.

4.5.3. Noise Filtering

When we integrate the accelerations, we also integrate the noise — which causes a drift in
the calculated trajectory. Therefore, we introduce a low-pass filter to attenuate the noise.
First, we perform a Fourier analysis of the accelerometer values to obtain the spectrum of
the noise. Figure 10 illustrates the noise spectrum for each axis. We can see that the noise
is concentrated in the low-frequency band, and it looks like we should use a high-pass filter
to be the right choice. However, the signal we are supposed to measure is also concentrated
in the low-frequency band, so a low-pass filter is the genuinely right choice. Using a low-pass
filter can make the signal smoother. Figure 11 shows the variation of the acceleration values
after the low-pass filter. The vertical coordinate in the figure represents the value of the
sensor, and the horizontal coordinate represents the sampling times (we used a sampling
rate of 100 Hz). As can be seen from the figure, the values on each axis are attenuated,
which corresponds to a partial attenuation of the noise.
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Figure 10. Noise spectrum of each axis

Figure 11. Comparison of accelerometer measurements before(orange) and after(green) filter
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4.6. Kalman Filter

As mentioned earlier, when no marker appears on the screen or the system cannot detect
a marker that appears on the screen, the system will call the IMU for localization. This is
module 4 of the system. The inertial sensors that come with mobile phones are relatively
cheap and thus prone to generating a lot of noise. When we use inertial sensors to estimate
the position of a moving phone, we need to double integrate the acceleration. However, at
the same time, we also integrate the noise. This leads to an accumulation of errors, which in
turn leads to incorrect localization and tracking of mobile phones. In our proposed method,
the absolute position obtained by vision-based localization is used to update the position
prediction obtained by IMU-based tracking via Kalman filter.

Kalman filtering [22] is mainly divided into two steps, prediction plus correction. Predic-
tion is the estimation of the current state based on the state of the previous moment, and
correction is the integrated analysis based on the observation of the current state and the
estimation of the previous moment to estimate the system’s optimal state value. Then the
process is repeated the next moment. The Kalman filter iterates continuously, it does not
require a large number of particle state inputs, only process quantities, so it is fast and well
suited for state estimation of linear systems.

Applying Kalman filtering to this project uses the position information obtained from vision-
based localization to update the position information obtained from sensor-based localiza-
tion. The process of constructing the Kalman filter state space for this project is described
in detail below.

The position and velocity of the device at moment t can be deduced from the position
and velocity at moment t− 1.

Pt = Pt − 1 + Vt − 1× δt+
δt2

2
at (45)

Vt = Vt − 1 + δt× at (46)

Where P , V , a, and δt, are position, velocity, acceleration, and time interval, respectively.
According to the state prediction formula of the Kalman filter,

X̂−t = AX̂−t−1 + Bat (47)
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Then combining equations (45) and (46), in a three-dimensional coordinate system, we can
obtain,

X̂−t = AX̂−t−1 + Bat →



P x
t

P y
t

P z
t

V x
t

V y
t

V x
t


=



P x
t−1 + V x

t−1 × δt+
δt2

2
axt

P y
t−1 + V y

t−1 × δt+
δt2

2
ayt

P z
t−1 + V z

t−1 × δt+
δt2

2
azt

V x
t−1 + δt× axt
V y
t−1 + δt× ayt
V z
t−1 + δt× azt



→



1 0 0 δt 0 0

0 1 0 0 δt 0

0 0 1 0 0 δt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





P x
t−1

P y
t−1

P z
t−1

V x
t−1

V y
t−1

V z
t−1


+



δt2

2
0 0

0
δt2

2
0

0 0
δt2

2

δt 0 0

0 δt 0

0 0 δt



[
axt ayt azt

]

(48)

Therefore, the state transition matrix A should then be

1 0 0 δt 0 0

0 1 0 0 δt 0

0 0 1 0 0 δt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(49)

The control matrix should be 

δt2

2
0 0

0
δt2

2
0

0 0
δt2

2

δt 0 0

0 δt 0

0 0 δt


(50)
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The measurement should be a 3× 1 matrix, that is
P x
t

P y
t

P z
t

 (51)

Thus the measurement matrix can be derived as
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (52)
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5. Implementation

5.1. Overview

This section will describe how we implemented this multi-technology based indoor localiza-
tion technology.

5.2. Dataset Collection

In this project, we need to collecting dataset by ourselves since no open-source dataset is
available. Our dataset is divided into a training set and a test set. The training set is used
to train the model and tune the parameters of the model. The test set is used to evaluate
the detection ability of the model.

5.2.1. Data Processing

The camera that comes with Nokia 7.2 was used to capture the images. The Nokia 7.2
provides a triple camera, which including a 48 MP main camera and ZEISS Optics. With
the 118 wide-angle lens and ZEISS Optics, it can capture the entire scene [23]. With this
camera, we can have a larger field of view, which means we will miss fewer markers during
the detection process. The locations were the lab inside Prairie Springs Science Center. We
printed out several ArUco markers and placed them in various locations around the room.
The number of markers that appear in the images we took varies to meet the need for the
model to detect different numbers of markers.

In order to satisfy that the model can detect markers under different light conditions, the
images in the dataset also have to include both sufficient and insufficient light conditions.
As shown in Figure 12(c), it is an insufficient light image. The model also needs to be able to
detect markers that are blurred due to rapid camera movement. As shown in Figure 12(b),
it is a blurred image caused by the rapid movement of the camera. Therefore, the dataset
should also include pictures of the blurred markers.

To meet these needs, we first took a large number of images and then processed them
further. We used a combination of Python and OpenCV to add image effects. The following
code implements adding motion blur to the image and adjusting the brightness of the image,
respectively.

1 import numpy as np

2 import cv2

3

4 def motion_blur(input_img_path , output_img_path , degree =12, angle =45):

5 image = cv2.imread(input_img_path)

6

7 image = np.array(image)

8
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9 # Here the matrix of motion blur kernel is generated for any angle ,

the larger the degree

10 # The higher the degree of blur

11 M = cv2.getRotationMatrix2D (( degree / 2, degree / 2), angle , 1)

12 motion_blur_kernel = np.diag(np.ones(degree))

13 motion_blur_kernel = cv2.warpAffine(motion_blur_kernel , M, (degree ,

degree))

14

15 motion_blur_kernel = motion_blur_kernel / degree

16 blurred = cv2.filter2D(image , -1, motion_blur_kernel)

17

18 # convert to uint8

19 cv2.normalize(blurred , blurred , 0, 255, cv2.NORM_MINMAX)

20 blurred = np.array(blurred , dtype=np.uint8)

21 cv2.imwrite(output_img_path , blurred)

22

23 # Get the path of the image to be transformed and generate the target path

24 image_filenames = [(os.path.join(dataset_dir , x), os.path.join(output_dir ,

x))

25 for x in os.listdir(dataset_dir)]

26 # Convert all images

27 for path in image_filenames:

28 motion_blur(path[0], path [1])

Listing 1. Code for adding motion blur to an image

1 import numpy as np

2 import cv2

3 import os

4

5 MAX_VALUE = 100

6

7 def adjustment(input_img_path , output_img_path , lightness , saturation):

8 """

9 For modifying the lightness and saturation of images

10 :param input_img_path

11 :param output_img_path

12 :param lightness

13 :param saturation

14 """

15

16 # Load image , read color image normalized and converted to floating

point

17 image = cv2.imread(input_img_path , cv2.IMREAD_COLOR).astype(np.float32

) / 255.0

18

19 # Color space conversion BGR to HLS

20 hlsImg = cv2.cvtColor(image , cv2.COLOR_BGR2HLS)

21

22 # Adjust brightness (linear transformation)

23 hlsImg[:, :, 1] = (1.0 + lightness / float(MAX_VALUE)) * hlsImg[:, :,

1]

24 hlsImg[:, :, 1][ hlsImg[:, :, 1] > 1] = 1

25 # Saturation
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26 hlsImg[:, :, 2] = (1.0 + saturation / float(MAX_VALUE)) * hlsImg[:, :,

2]

27 hlsImg[:, :, 2][ hlsImg[:, :, 2] > 1] = 1

28 # HLS2BGR

29 lsImg = cv2.cvtColor(hlsImg , cv2.COLOR_HLS2BGR) * 255

30 lsImg = lsImg.astype(np.uint8)

31 cv2.imwrite(output_img_path , lsImg)

32

33 dataset_dir = ’DATASET_DIR_PATH ’

34 output_dir = ’OUTPUT_PATH ’

35

36 # parameters adjustment

37 lightness = int(input("lightness(lightness -100~+100):"))

38 saturation = int(input("saturation(saturation -100~+100):"))

39

40 # Get the path of the image to be transformed and generate the target path

41 image_filenames = [(os.path.join(dataset_dir , x), os.path.join(output_dir ,

x))

42 for x in os.listdir(dataset_dir)]

43 # Convert all images

44 for path in image_filenames:

45 adjustment(path[0], path[1], lightness , saturation)

Listing 2. Code for lightness adjustment

5.2.2. Data Labeling

In machine learning, data labeling is used to identify raw data (images, text files, videos,
and so on.) and add one or more meaningful tags of information to provide context so that
machine learning models can learn from it. For example, tags can indicate whether a photo
contains a bird or a car, which words are pronounced in a recording, or whether an X-image
contains a tumor. Data labeling is required for various use cases, including computer vi-
sion, natural language processing, and speech recognition. It is also an indispensable part
of making a dataset. LabelImg [24] is a handy tool that helps me to finish this task. It is a
graphical image annotaion tool and written in Python and uses Qt for its graphical interface.

LabelImg supports the YOLO format. In the YOLO dataset format, a file with the same
name is created for each image file in the same directory. Each file contains the correspond-
ing image file: object class, object coordinates, height, and width. Figure 13 displays the
data labeling process of this project. The results of labeling can be saved as XML files or
TXT files. This labeling process requires us to mark out the boxes that enclose the markers
manually. After drawing a box each time, we have to mark what object the box belongs to.
As shown in Figure 13, we have marked four boxes, and the right side shows the categories of
the boxes, all of which are ArUco codes. After completing the annotation of one image, we
can import the following image and cycle through the process. Images are classified based
on their different conditions, such as lighting and blurring. The number of training sets
accounted for 80% of the total number of data sets, while the number of test sets accounted
for 20%. As can be seen from the Figure 14, this dataset does not have a validation set.
The reason is that the validation set is automatically divided from the training set at the
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(a) The original image

(b) The blurred image

(c) The insufficient illumination image

Figure 12. The example after adjusting images
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Figure 13. The processing of data labeling

beginning of model training. The test set is needed to evaluate the model performance.
Figure 14 illustrates the data set structure.

5.3. ArUco Marker Generation

ArUco code can be generated in multiple sizes. The size is selected based on the object size
and the scene for successful detection. If very small markers go undetected, simply increasing
their size can make their detection easier. These markers can be easily generated using
OpenCV. ArUco module in OpenCV has 25 predefined marker dictionaries. All markers in
the dictionary contain the same number of blocks or bits (4×4, 5×5, 6×6 or 7×7), and each
dictionary contains a fixed number of markers (50, 100, 250 or 1000). The following is an
example of batch generating ArUco markers and detecting the markers.

After generating the markers, we print out and take a picture of them for detection test-
ing, which is shown as Figure 16 and 17

Given an image in which the ArUco markers are visible, the detection program should
return a list of detected markers. Each detected marker includes:

• Position of the four corners of the image (in the original order)

• Id of marker

5.4. Camera Calibration

The calibration steps are introduced as follows. First, we need to fix the ArUco checkerboard
figure onto a flat surface and then take at least 20 photos from different angles and posi-
tions using the cell phone camera. Second, The Aruco.calibrateCameraAruco() function will
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Figure 14. The dataset structure
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Figure 15. Batch-generated markers containing a 6x6-bit binary

Figure 16. The original image of markers
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Figure 17. IDs of the detected markers

calibrate camera. Finally, the calibration results are saved and will be used in the detection
of the marker object. The following shows the part of code for calibrating the camera and
saving the calibration results.

1 public double calibrate (){

2 List <Mat > rvecs=new LinkedList <>();

3 List <Mat > tvecs=new LinkedList <>();

4

5 return Aruco.calibrateCameraAruco(

6 allCornersConcatenated ,

7 allIdsConcatenated ,

8 markerCounterPerFrame ,

9 board ,

10 size ,

11 cameraMatrix ,

12 distCoeffs ,

13 rvecs ,

14 tvecs

15 );

16 }

Listing 3. Partial Code for camera calibration

1 public static void save(Activity activity , Mat cameraMatrix , Mat

distortionCoefficients) {

2 SharedPreferences sharedPref = activity.getPreferences(Context.

MODE_PRIVATE);

3 SharedPreferences.Editor editor = sharedPref.edit();

4
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5 double [] cameraMatrixArray = new double[CAMERA_MATRIX_ROWS *

CAMERA_MATRIX_COLS ];

6 cameraMatrix.get(0, 0, cameraMatrixArray);

7 for (int i = 0; i < CAMERA_MATRIX_ROWS; i++) {

8 for (int j = 0; j < CAMERA_MATRIX_COLS; j++) {

9 Integer id = i * CAMERA_MATRIX_ROWS + j;

10 editor.putFloat(id.toString (), (float)cameraMatrixArray[id]);

11 }

12 }

13

14 double [] distortionCoefficientsArray = new double[

DISTORTION_COEFFICIENTS_SIZE ];

15 distortionCoefficients.get(0, 0, distortionCoefficientsArray);

16 int shift = CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS;

17 for (Integer i = shift; i < DISTORTION_COEFFICIENTS_SIZE + shift; i++)

{

18 editor.putFloat(i.toString (), (float)distortionCoefficientsArray[i

-shift ]);

19 }

20

21 editor.commit ();

22 Log.i(TAG , "Camera matrix: " + cameraMatrix.dump());

23 Log.i(TAG , "Distortion coefficients: " + distortionCoefficients.dump()

);

24 }

Listing 4. Partial Code for saving camera calibration’s result

When we launch this application, we can capture pictures with just a simple tap on the
screen. As mentioned earlier, at least 20 pictures have to be captured before the camera
calibration can be done. The top right corner of the screen shows the number of pictures
currently captured. If we click on the calibration button without taking enough pictures, a
prompt will pop up at the screen’s bottom, as shown in Figure 18. Also, a corresponding
prompt will pop up for each successful picture , as shown in Figure 19. As displayed in
Figure 20 and Figure 21, after enough pictures have been taken, we can click the calibration
button in the upper right corner, and the calibration results will be displayed at the bottom
of the screen and stored in this phone, waiting to be called.

Figure 18. Screenshot of the prompt for insufficient frames

35



Figure 19. Screenshot of the prompt for successfully picture captured

Figure 20. Screenshot of after clicking the ’Calibrate’ button

Figure 21. Screenshot of the prompt for successfully calibrate
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5.5. ArUco Marker Detection

Before detecting the ArUco markers, we need to load the calibration results. The Camera-
Parameter class is responsible for this task, and the code for this class is shown below.

1 public static boolean tryLoad(Activity activity , Mat cameraMatrix , Mat

distCoeffs) {

2 try{

3 Context context = activity.createPackageContext(

CAMERA_CALIBRATION_PKG , Context.CONTEXT_IGNORE_SECURITY);

4 SharedPreferences cameraPrefs = context.getSharedPreferences(

CAMERA_CALIBRATION_PREFS , Context.MODE_WORLD_READABLE);

5

6 if(cameraPrefs.getFloat("0" ,-1)==-1)

7 return false;

8 else

9 load(cameraPrefs ,cameraMatrix ,distCoeffs);

10

11 }

12 catch(PackageManager.NameNotFoundException e){

13 e.printStackTrace ();

14 }

15 return true;

16 }

17

18 private static void load(SharedPreferences sharedPreferences , Mat

cameraMatrix , Mat distCoeffs) {

19 double [] cameraMatrixArray = new double[CAMERA_MATRIX_ROWS *

CAMERA_MATRIX_COLS ];

20

21 for (int i = 0; i < CAMERA_MATRIX_ROWS; i++) {

22 for (int j = 0; j < CAMERA_MATRIX_COLS; j++) {

23 int id = i * CAMERA_MATRIX_ROWS + j;

24 cameraMatrixArray[id] = sharedPreferences.getFloat(Integer.

toString(id), -1);

25 }

26 }

27 cameraMatrix.put(0,0, cameraMatrixArray);

28

29 double [] distortionCoefficientsArray = new double[

DISTORTION_COEFFICIENTS_SIZE ];

30 int shift = CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS;

31

32 for(int i = shift; i < DISTORTION_COEFFICIENTS_SIZE + shift; i++){

33 distortionCoefficientsArray[i-shift] = sharedPreferences.getFloat(

Integer.toString(i) ,-1);

34 }

35 distCoeffs.put(0,0, distortionCoefficientsArray);

36 }

Listing 5. Partial code for loading the result of camera calibration

The dictionary of ArUco code we use is 6x6x250, which is required to be declared before
detection. Since we need to use the camera’s live image, we need to request permission to

37



open the camera when the program launches. As each frame is passed into the system, the
RGB image will be converted to grayscale before the markers are detected. When a marker
is detected, the system frames the detected marker and draws the coordinate axis and its
ID. The camera’s footage will occupy the majority of the screen for display. Figure 22 shows
the screenshot of the current system.

1 // Get the permission of camera

2 if (ContextCompat.checkSelfPermission(this , Manifest.permission.CAMERA) !=

3 PackageManager.PERMISSION_GRANTED) {

4 ActivityCompat.requestPermissions(this , new String [] {Manifest.

permission.CAMERA},

5 50); }

Listing 6. Partial code for getting camera permission

1 // Image grayscale

2 Imgproc.cvtColor(inputFrame.rgba(), rgb , Imgproc.COLOR_RGBA2RGB);

3 gray=inputFrame.gray();

4 // Create a one -centered matrix object to store the IDs of the detected

markers

5 ids = new MatOfInt ();

6 corners.clear();

7 // Marker detection

8 Aruco.detectMarkers(gray , dictionary , corners , ids , parameters);

9

10 if(corners.size() >0){

11 // Basket out the markers

12 Aruco.drawDetectedMarkers(rgb , corners , ids);

13

14 rvecs=new Mat();

15 tvecs=new Mat();

16

17 Aruco.estimatePoseSingleMarkers(corners ,0.025f,cameraMatrix ,distCoeffs

,rvecs ,tvecs);

18

19 for(int i=0; i<ids.toArray ().length; i++){

20 transformModel(tvecs.row (0),rvecs.row (0));

21 Aruco.drawAxis(rgb , cameraMatrix , distCoeffs , rvecs.row(i), tvecs.

row(i) ,0.01f);

22 }

23 }

Listing 7. Partial code for drawing axis
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(a) The first screenshot

(b) The second screenshot

Figure 22. Screenshot of the current system detecting the marker

5.6. YOLOV3

5.6.1. Training

We train the YOLOV3 on Google Colab. The framework we use is Darknet, which we use
to train our custom dataset. In the first step, we need to modify the file that defines the
network structure according to our self-define dataset. Since our dataset contains only one
category, which is the ArUco code, the corresponding number of filters can be calculated as
18 according to this formula (53) below.

filters = (classes+ 5)× 3 (53)

where filters, classes indicates the number of filters and number of classes.
The following is a portion of the document that defines the network structure.

1 [net]

2 # Testing

3 # batch =1

4 # subdivisions =1
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5 # Training

6 batch =64

7 subdivisions =16

8 width =416

9 height =416

10 channels =3

11 momentum =0.9

12 decay =0.0005

13 angle=0

14 saturation = 1.5

15 exposure = 1.5

16 hue =.1

17

18 learning_rate =0.001

19 burn_in =1000

20 max_batches = 2000

21 policy=steps

22 steps =1600 , 1800

23 scales =.1 ,.1

24

25 [convolutional]

26 batch_normalize =1

27 filters =32

28 size=3

29 stride =1

30 pad=1

31 activation=leaky

Listing 8. Partial document for network structure

After uploading the dataset and the corresponding files to Google Colab, we can start training
the model. A weight file is obtained at the end of training and will be used in the process of
detecting markers.

5.6.2. Markers Detection by YOLOV3 in Android

After training the neural network, our task becomes to make the neural network detect
markers on the phone. We use OpenCV to help with this task. First, we need to add OpenCV
as a dependency of the project. This step was done in the previous camera calibration. Place
the weight file obtained after training into the Android project and load the weight file with
the function getAssetsFile(). The next step is to pass the camera frame into the network
for detection. Finally, the coordinate points of the four corners of the detected markers are
returned. Some of the code to accomplish this task is shown below, and the complete code
can be seen in the appendix.

1 public List <Corners > markerDetection(CameraBridgeViewBase.

CvCameraViewFrame inputFrame) {

2

3 List <Corners > detectionResult = new ArrayList <>();

4

5 classNames = readLabels("labels.txt", this);

6 for(int i=0; i<classNames.size(); i++) {

7 colors.add(randomColor ());
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8 }

9 // Loading network

10 String modelConfiguration = getAssetsFile("yolov3_aruco.cfg", this);

11 String modelWeights = getAssetsFile("yolov3_aruco_final.weights", this

);

12 yolo = Dnn.readNetFromDarknet(modelConfiguration , modelWeights);

13

14 Mat frame = inputFrame.rgba();

15 Imgproc.cvtColor(frame , frame , Imgproc.COLOR_RGB2RGBA);

16 Size frame_size = new Size (416, 416);

17 Scalar mean = new Scalar (127.5);

18

19 ......

20 }

Listing 9. Partial code for markers detection by yolov3 in Android

5.7. Vision-Based Localization

Once we have obtained the two-dimensional coordinate points of the markers, we can move
to the next stage, solving the device’s position in the three-dimensional coordinate system.
That is vision-based indoor localization. The known 3D coordinates of the marker are stored
in a class called Coordinates, and the corresponding 3D coordinates are obtained based on
the marker’s ID.The Calib3d.solvePnP() function can then be used to calculate the device’s
rotation and translation matrices. These two matrices will be used to calculate the position
of the device. The following code fragment shows how to calculate a device’s location and
finally return the result to the function that calls it.

1 private Mat getCameraPose(MatOfPoint2f imagePoints , int id) {

2 Mat cameraPosition;

3

4 MatOfPoint3f mObjectPoints = new MatOfPoint3f ();

5 List <Point3 > objectPoints = new ArrayList <>();

6 double [][] coordinates = Coordinates.getCoordinates(id);

7 objectPoints.add(new Point3(coordinates [0][0] , coordinates [0][1] ,

coordinates [0][2]));

8 objectPoints.add(new Point3(coordinates [1][0] , coordinates [1][1] ,

coordinates [1][2]));

9 objectPoints.add(new Point3(coordinates [2][0] , coordinates [2][1] ,

coordinates [2][2]));

10 objectPoints.add(new Point3(coordinates [3][0] , coordinates [3][1] ,

coordinates [3][2]));

11 mObjectPoints.fromList(objectPoints);

12

13 double [] distortionCoefficientsArray = {1.15562467e-01, -1.87996508e

-01, 1.54664020e-04, -2.89903773e-04, 2.00265575e -02};

14 MatOfDouble mDistCoeffs = new MatOfDouble ();

15 mDistCoeffs.fromArray(distortionCoefficientsArray);

16

17 // Get the rotation vector of current camera pose
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18 Calib3d.solvePnP(mObjectPoints , imagePoints , cameraMatrix , mDistCoeffs

, rvecs , tvecs , false , Calib3d.SOLVEPNP_EPnP);

19

20 Mat rotationMatrix = new Mat();

21 // Convert rotation vector to ratation matrix

22 Calib3d.Rodrigues(rvecs , rotationMatrix);

23 rotationMatrix = rotationMatrix.inv();

24 // Calculate camera position , corresponding to equation (25) in

section 4

25 cameraPosition = star(star(rotationMatrix , -1), tvecs);

26

27 return cameraPosition;

28 }

Listing 10. Partial code for calculating device’s 3D coordinates

5.8. Sensor Fusion-Based Localization

As mentioned in section 4.5.1., we need to find the rotation matrix before converting the
phone coordinate system to the Earth coordinate system. Android provides a function called
getRotationMatrix(), which can be used to find the rotation matrix. This function requires
the use of accelerometer and magnetometer. Once we have the acceleration values on the
Earth coordinate system, we can start calculating the Android device’s position. The 3D
coordinates of the Android device can be obtained by double integration of the acceleration
on each of the three axes according to the method mentioned in the section 4.5.2..

1 final SensorEventListener myListener = new SensorEventListener () {

2 @Override

3 public void onSensorChanged(SensorEvent event) {

4 if (event.sensor.getType () == Sensor.TYPE_MAGNETIC_FIELD) {

5 magneticFieldValues = event.values;

6 }

7 if (event.sensor.getType () == Sensor.TYPE_ACCELEROMETER) {

8 accelerometerValues = event.values;

9 }

10 float [] rotationMatrix = calculateRotationMatrix ();

11 acceleration.add(times(rotationMatrix , accelerometerValues));

12 }

13

14 @Override

15 public void onAccuracyChanged(Sensor sensor , int accuracy) {

16 }

17 };

18

19 private float[] calculateRotationMatrix () {

20 float[] values = new float [3];

21 float[] rotationMatrix = new float [9];

22 SensorManager.getRotationMatrix(rotationMatrix , null ,

accelerometerValues , magneticFieldValues);

23 SensorManager.getOrientation(rotationMatrix , values);

24
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25 return rotationMatrix;

26 }

5.9. Kalman Filter

As mentioned in the section 4.6., Kalman filtering is mainly divided into two parts: prediction
and update. Since we need information about the device’s location in space, this Kalman
filter will be a 3D Kalman filter.

1 public void kalmanFilter(float x, float y, float z) throws Exception {

2 JKalman kalman = new JKalman(6, 3);

3

4 Matrix stateMatrix = new Matrix(6, 1); // [x, y, z, dx , dy , dz]

5 Matrix correctMatrix = new Matrix(6, 1);

6 Matrix measurement = new Matrix(3, 1); // measurement [x, y, z]

7

8 // x, y, z is the coordinates from vision -based localization

9 measurement.set(0, 0, x);

10 measurement.set(1, 0, y);

11 measurement.set(2, 0, z);

12

13 double [][] tr = { {1, 0, 0, 1, 0, 0},

14 {0, 1, 0, 0, 1, 0},

15 {0, 0, 1, 0, 0, 1},

16 {0, 0, 0, 1, 0, 0},

17 {0, 0, 0, 0, 1, 0},

18 {0, 0, 0, 0, 0, 1} };

19 kalman.setTransition_matrix(new Matrix(tr));

20 }

Listing 11. Partial code for implementing Kalman filter

5.10. Trajectory Plotting

With the previously mentioned calculation process, we get the coordinates of the device
during the movement. Now we can start plotting the trajectory of the device’s movement.
In this section, we use a third-party library called SciChart, which provides many draw-
ing tools, and these tools are available for Android, which is very helpful for our drawing
process on this system. We first need to obtain its license and write it into the code to
use this third-party library. After this step of preparation, we can use the tool classes pro-
vided by SciChart to draw the 3D trajectory of the device. The following code snippet
shows how to get permission and draw. The drawn 3D trajectory will be displayed on the
screen in real-time. Figure23 illustrates how the 3D trajectory looks like. As can be seen,
the calculated three coordinate points are displayed in real-time at the top right of the screen.

1 // Set your license code here

2 try {

3 com.scichart.charting.visuals.SciChartSurface.setRuntimeLicenseKey(

4 "LICENSE");
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5 } catch (Exception e) {

6 Log.e("SciChart", "Error when setting the license", e);

7 }

8

9 private void drawTrajectory () {

10 SciChart3DBuilder.init(this);

11 final SciChart3DBuilder sciChart3DBuilder = SciChart3DBuilder.instance

();

12

13 final DataManager dataManager = DataManager.getInstance ();

14

15 final Camera3D camera3D = sciChart3DBuilder.newCamera3D ().build ();

16

17 final NumericAxis3D xAxis = sciChart3DBuilder.newNumericAxis3D ().build

();

18 final NumericAxis3D yAxis = sciChart3DBuilder.newNumericAxis3D ().build

();

19 final NumericAxis3D zAxis = sciChart3DBuilder.newNumericAxis3D ().build

();

20

21 xAxis.setVisibleRange(new DoubleRange (-2.0, 11.0));

22 yAxis.setVisibleRange(new DoubleRange (-2.0, 2.0));

23 zAxis.setVisibleRange(new DoubleRange (-2.0, 11.0));

24

25 xAxis.setAxisTitle("X");

26 yAxis.setAxisTitle("Y");

27 zAxis.setAxisTitle("Z");

28

29 zAxis.setFlipCoordinates(true);

30

31 final XyzDataSeries3D <Double , Double , Double > xyzDataSeries3D = new

XyzDataSeries3D <>(Double.class , Double.class , Double.class);

32 final PointMetadataProvider3D metadataProvider = new

PointMetadataProvider3D ();

33

34 final List <PointMetadataProvider3D.PointMetadata3D > medatata =

metadataProvider.metadata;

35

36 for (int i = 0; i < xCoordinates.size(); i++) {

37 final double x = xCoordinates.get(i);

38 final double y = yCoordinates.get(i);

39 final double z = zCoordinates.get(i);

40

41 xyzDataSeries3D.append(x, y, z);

42

43 final int color = Color.RED;

44 final float scale = dataManager.getRandomScale ();

45 medatata.add(new PointMetadataProvider3D.PointMetadata3D(color ,

scale));

46 }

47

48 final SpherePointMarker3D pointMarker = sciChart3DBuilder.

newSpherePointMarker3D ()

49 .withFill(ColorUtil.Red)
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50 .withSize (0.1f)

51 .build ();

52

53 final PointLineRenderableSeries3D rs = sciChart3DBuilder.

newPointLinesSeries3D ()

54 .withDataSeries(xyzDataSeries3D)

55 .withPointMarker(pointMarker)

56 .withStroke(ColorUtil.Green)

57 .withStrokeThicknes (2f)

58 .withIsAntialiased(false)

59 .withIsLineStrips(true)

60 .withMetadataProvider(metadataProvider)

61 .build ();

62

63 UpdateSuspender.using(surface3D , new Runnable () {

64 @Override

65 public void run() {

66 surface3D.setCamera(camera3D);

67 surface3D.setXAxis(xAxis);

68 surface3D.setYAxis(yAxis);

69 surface3D.setZAxis(zAxis);

70

71 surface3D.getRenderableSeries ().add(rs);

72

73 surface3D.getChartModifiers ().add(sciChart3DBuilder.

newModifierGroupWithDefaultModifiers ().build ());

74 }

75 });

76 }

Listing 12. Partial code for drawing device’s 3D trajectory

Figure 23. Screenshot of running system
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5.11. Experimental Data Collection

To be able to analyze the results of the experiment afterward, we also need to collect data
from the experiment. We chose to save the experimental data on the computer rather than
on the mobile device. To achieve this goal, we used a MySql database. After calculating the
3D coordinates of the device, these data are also stored in the database in real-time. This
operation requirement is that the mobile device and the computer need to be in the same
network environment. The following code snippet shows how to store the 3D coordinates in
the database. The complete code can be found in the appendices.

1 new Thread(new Runnable () {

2 @Override

3 public void run() {

4 Connection connection = DBOpenHelper.getConnection ();

5 String sql = "INSERT INTO vision1_fifteen (x, y, z) VALUES (?,?,?)

";

6 PreparedStatement preparedStatement;

7 try {

8 preparedStatement = connection.prepareStatement(sql);

9 preparedStatement.setDouble (1, cameraPosition.get(0,0) [0]);

10 preparedStatement.setDouble (2, cameraPosition.get(1,0) [0]);

11 preparedStatement.setDouble (3, cameraPosition.get(2,0) [0]);

12 preparedStatement.execute ();

13 preparedStatement.close ();

14 connection.close ();

15 } catch (SQLException throwables) {

16 throwables.printStackTrace ();

17 }

18 }

19 }).start();

Listing 13. Partial code for data collection
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6. Testing

6.1. Overview

In this section, the testing design and the analysis of each testing result are presented. The
purpose of the testing is to verify that our proposed approach and the implemented system
meet the requirements we mentioned in Section 3. We test the trained neural network
using a test set to evaluate the detection accuracy and efficiency of the neural network.
Then we perform fifteen experiments on the IMU-based localization method, vision-based
localization method, and our proposed method, respectively. We also analyze the results of
each experiment, thus verifying the superiority of our proposed method.

6.2. Markers Detection with Neural Network

We use 20% of the dataset, i.e., 200 images, as a test set to validate the detection performance
of YOLOV3. The test set has 200 files and contains 784 ArUco code markers. Then we use
the trained YOLOV3 to detect the test set. The detection results show that out of 784
objects to be detected, 368 were detected incorrectly.

6.2.1. Evaluation Metrics

Based on the above detection results, we can then evaluate of the neural network model we
have trained. We use mean Average Precision(mAP) to evaluate our training result. Before
that, we need to introduce a few metrics.

1. Precision.
Precision measures how accurate is model’s predictions. i.e. the percentage of model’s
prediction are correct.

Precision =
TruePositive

TruePositive+ FalsePositive
(54)

2. Recall.
Recall measures how good model find all the positives.

Recall =
TruePositive

TruePositive+ FalseNegative
(55)

3. IoU (Intersection over union). IoU measures the overlap between two boundaries. We
use that to measure how much model predicted boundary overlaps with ground truth
(the real object boundary).

IoU =
AreaOfOverlap

AreaOfUnion
(56)

4. AP (Average precision). AP computes the average precision value for recall value over
0 to 1. The general definition for the AP is finding the area under the precision-recall
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curve above. Precision and recall are always between 0 and 1. Therefore, AP falls
within 0 and 1 also.

AP =

∫ 1

0

p(r) dr (57)

5. mAp. The mAp is the average of AP. Since we only have one class which is the ArUco
code, so mAp is equal to AP.

6.2.2. Result

Figure 24, 25 and 26 show the precision, recall and mAP of our trained model, respectively.
As can be seen from the results, our model has achieved a 99.87% mAP. This detection accu-
racy is very high and satisfies our requirements of marker detection for indoor localization.

Figure 24. The precision of our trained model
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Figure 25. The recall of our trained model

Figure 26. The mAP of our trained model
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6.3. Indoor Localization and Tracking System Testing

To demonstrate that our proposed method is superior to both sensor-based localization only
and vision-based localization only, we first tested the effect of applying only one of these
methods for localization and tracking. Lastly, we tested our complete system, i.e., applying
the IMU to support visual localization.

Our experimental setup is as follows:

• Location: The laboratory in the Prairie Springs Science Center

• Device: Nokia 7.2

• Measuring tool: Tape measure

• Conditions: Sufficient and insufficient light; shade and no shade on markers

We choose a point in the lab as the origin of the world coordinates, and then affix ArUco
markers at different heights and on different surfaces. Each marker’s location information
was recorded to observe the difference between the system test results and the actual data
results. Figure 27 shows the environment of the laboratory. We take the center point of
the first marker as the origin of the world coordinate system. The laboratory’s floor plan
and the actual walking route during the experiment is shown in Figure 28. The small black
squares in the figure show the approximate location of the markers in the laboratory.

Figure 27. The laboratory’s environment
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Figure 28. The laboratory’s floor plans and actual walking route

In our indoor localization and tracking experiment, fifteen trails are conducted. Figure 29
is the actual 3D moving trajectory. The actual path shows the route of our experiment.
The true path contains two corners, as well as a movement in the vertical direction. The
maximum distance of motion in the x-axis direction reached 7 meters, and the maximum
length of motion in the z-axis direction was 10 meters.
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Figure 29. The real trajectory

6.3.1. Testing of IMU-based Indoor Tracking

We first conduct fifteen experiments on the IMU-based indoor localization method to evalu-
ate the effectiveness of this method. Figure 30 displays the results of the sensor fusion-based
method via fifteen experiments. Figure 31 shows an example from those experiments on
the sensor-based localization method to localize and track mobile devices. It can be seen
from the figure that the sensor-based approach, which is based on the IMU, has a significant
drift in obtaining the movement trajectory. The reason for such a significant error in the
IMU-based method is that the interference of the gravitational acceleration in the vertical
direction cannot be completely eliminated, and residuals exist. Moreover, the double inte-
gration of acceleration leads to the accumulation of errors. Another reason is the drift of the
sensor during the measurement. Specifically, when a moving device goes from rest to motion
and back to rest, the inertia sensor readings are not zero.
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Figure 30. Fifteen trajectories obtained by sensor fusion-based method

Figure 31. Comparison of real trajectory and trajectory obtained by sensor fusion-based method

53



6.3.2. Testing of the Vision-based Tracking

Our system still uses mainly vision-based localization methods when markers can be detected.
This part of the experiment tests the effectiveness of our proposed method of using neural
networks to aid visual localization.

A. PnP Algorithm Comparison

We need to verify that the EPnP algorithm is superior to other PnP algorithms. Therefore,
we designed this experiment to compare the difference in accuracy and speed of computation
between EPnP, P3P and Iterative algorithms.

In this experiment, the origin of our world coordinate system is the center of the marker,
with the X-axis pointing to the right, the Y-axis pointing up, and the Z-axis facing out-
ward perpendicular to the wall. We took pictures of different markers from different angles
(Front, below, above, left and right side) and different distance (0.6, 1.2, 1.8, 2.4 meters), and
noted the camera’s position at the time the picture was taken. Then, We use three different
methods - EPNP, P3P, and Iterative - to calculate the camera position in world coordinates.
Therefore, the camera had a total of 20 different positions, and we took 30 images for each of
these different positions and then performed thirty experiments for each position to calculate
the average error. Figures 32 to 36 show the error comparison of different PnP algorithms
for calculating mobile devices at different angles and different distances.
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Figure 32 compares the average error of different algorithms for estimating the camera posi-
tion at different distances when the mobile device is located directly in front of the marker.
The Iterative and P3P algorithms perform similarly, with the EPnP algorithm showing a
clear advantage. The errors of all three algorithms increase with increasing distance.

Figure 32. Comparison of different algorithm’s average localization error – Front
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Figure 33 shows the performance of the different algorithms when the camera is located
directly below the marker. The error of the three algorithms still increases with distance,
and the performance of the three algorithms is very similar. However, the EPnP algorithm
still has a slight advantage.

Figure 33. Comparison of different algorithm’s average localization error – Blow

Figures 34 and 35 show the comparison of the errors in estimating the camera position by
different algorithms when the marker is located directly above the camera and to the left
of the marker, respectively. The errors of the P3P and Iterative algorithms are very similar
when estimating these two different angles, and the error curves almost overlap. Again, the
computed error is positively correlated with the distance. EPnP algorithm has an obvious
advantage over the other two algorithms.
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Figure 34. Comparison of different algorithm’s average localization error – Above

Figure 35. Comparison of different algorithm’s average localization error – Left
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Figure 36 compares the performance of different algorithms when the camera is on the right
side of the marker. The difference between here and the previous one is that the EPnP
algorithm is not significantly affected by the distance.

Figure 36. Comparison of different algorithm’s average localization error – Right

As can be seen from this experimental results, the computational error of each algorithm
increases with the distance. The reason is that when the marker is farther away from the
camera, the smaller the imaging area on the image. The x, y coordinate information in the
physical world becomes a minimal number of pixels in the image. This causes an error in
the z-axis position. The closer the marker is to the camera, the larger the imaging area
and the greater the accuracy. In addition, the lighting condition at the time the photo was
taken can also affect the calculation results. In general, the EPnP algorithm has the slightest
error, and the superiority of the EPnP algorithm is better demonstrated when the distance
is farther.

Besides, we also performed performance tests on the three algorithms. We executed the
same program 1000 times with each of the three algorithms to obtain the running time of
the algorithms. Table 2 shows the results of the three different algorithms. From the results,
it is clear that the EPnP algorithm is the fastest, followed by the P3P algorithm. The
iterative method is the slowest.
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Algorithm Time

EPnP 223.658ms

P3P 657.869ms

Iterative 1110.194ms

Table 2. Performance comparison of different PnP algorithms

B. Vision-based Localization and Tracking Result

The second part of the experiment is for the vision-based localization method. Similarly, this
part of the experiment was repeated fifteen times. Figure 37 shows the trajectories obtained
by vision-based localization method. Figure 38 shows the comparison between the real tra-
jectory and the trajectory obtained from one of the experiments. As can be seen from the
figures, the vision-based approach provided trajectories are not smooth as it calculates the
absolute positions of the mobile device. This is because vision-based localization methods
rely on markers as reference positions. When there is no marker captured in FoV, no camera
pose and position could be estimated. In this case, there will be a gap in the trajectory,
positioning will be continued once at least one marker is detected. Therefore, the estimated
movement trajectory moves suddenly from the previous position to the current position.

Figure 37. Fifteen trajectories obtained by vision-based method
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Figure 38. Comparison of real trajectory and trajectory obtained by vision-based method

6.3.3. Testing of Our Proposed Method

The last part of the experiment is to evaluate our proposed approach and test our system’s
reliability and effectiveness. The experiment has also been repeated fifteen times. The re-
sults obtained by our system are shown in Figure 39. Figure 40 shows the comparison of
one of the paths obtained by our system with the real path in the experiment. From the
figure 40, we find that the mobile phone’s movement trajectory obtained through our system
is very close to the actual trajectory. Moreover, there are no large jumps in the obtained
trajectories, meaning that sensor-based localization successfully fills the gap when vision-
based localization cannot be used. These fifteen experiments demonstrate that our proposed
method combines the advantages of vision-based and sensor-based localization and compen-
sates each other for the disadvantages of these two methods, yielding good results.
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Figure 39. Fifteen trajectories obtained by our system

Figure 40. Comparison of real trajectory and trajectory obtained by our system
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Table 3 shows the example of location errors evaluated at the selected positions (as indicated
in figure 28). The yellow dots in the figure 28 represent these selected points. The location
error comparison of our proposed method, vision-based method, and sensor fusion-based
method is shown in table 4. On average, our proposed method improves 66.4%, 65%, and
61.6% in the x-axis, y-axis, and z-axis, respectively, with respect to the vision-based method.
Furthermore, our proposed method improves much more for the sensor-based method. The
improvement is 93.6%, 80% and 84.4% in x-axis, y-axis and z-axis, respectively.

No. Real Our system Vision-based Sensor fusion-based

1
-1

-0.15
1

-1.4011
-0.5655
1.3943

-1.6379
1.0470
1.3849

-8.9199
-2.2626
-3.8799

2
1

-0.2
0.8

1.3202
-0.5938
1.1437

2.0098
1.6148
1.3625

-6.4524
-2.3476
-2.8963

3
7
0
4

7.3121
0.4543
4.1368

7.8599
1.1423
5.2847

0.3548
-1.3658
1.8462

4
4

1.2
10

4.4975
1.6831
10.4304

2.9463
2.2486
10.2109

-3.4625
-2.3746
0.4625

5
0.6
1

9.5

1.1250
1.3554
10.3051

2.1186
2.2250
10.1139

-7.3624
-2.4762
5.7264

Table 3. Examples of localization using different methods (unit in meter)
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No.
Our system

error
Vision-based

error
Sensor fusion-based

error
Impr1 Impr2

1
0.4011
0.4155
0.4057

1.3621
1.1030
1.6159

7.9199
2.1126
4.8799

71%
69%
75%

95%
80%
92%

2
0.4798
0.4062
0.4675

1.0980
1.8148
1.4375

7.4524
2.1476
3.6963

56%
78%
67%

94%
81%
87%

3
0.4897
0.4543
0.6632

1.1401
1.1423
1.2847

6.6452
1.3658
2.1574

57%
60%
48%

93%
66%
69%

4
0.4975
0.4831
0.4304

3.0537
1.0486
1.7810

7.4625
3.5746
9.5375

83%
54%
76%

93%
86%
95%

5
0.5250
0.4446
0.8051

1.5186
1.2250
1.3864

7.9624
3.4762
3.7736

65%
64%
42%

93%
87%
79%

1 Improvement of our proposed method over vision-based method
2 Improvement of our proposed method over sensor-based method

Table 4. Examples of localization error comparison (unit in meter)

The tracking errors of these fifteen experiments on the three axis are shown in figure 41,
figure 42, and figure 43, respectively. The experimental results show that IMU-based indoor
localization methods have the worst performance. In the fifteen experiments we repeatedly
performed, the average error of this method was around 8 meters. Vision-based localization
methods perform much better, with an average error of less than 1 meter. Our system per-
formed the best, with the highest accuracy in localization, within an average error of 0.5
meters. The error in the mobile phone movement trajectory obtained by our system is rela-
tively large on the Y-axis compared to the other two axes. The reason for this phenomenon
may be that the markers are closer together in the vertical direction, causing duplication of
the detection. Overall, our system outperforms both vision-based and IMU-based localiza-
tion methods, and it meets the accuracy requirements for indoor localization.
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Figure 41. Errors in the X-axis for different localization methods

Figure 42. Errors in the Y-axis for different localization methods
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Figure 43. Errors in the Z-axis for different localization methods
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7. Conclusion and Future Works

Our proposed neural network-based indoor localization method improves stability of indoor
tracking system. It is improved by introducing inertial sensors to assist vision-based lo-
calization. Compared to vision-based localization without the assistant of inertial sensors,
our system avoids the inability to localize due to missing markers. The proposed method
does not rely on any expensive depth camera and can be easily planted to a mobile device.
We evaluate and validate our method with the prototype implementation on the smart-
phone platform. The experimental results show that the system has strong robustness to the
complex indoor environment, strong anti-interference ability, high accuracy, and fast pro-
cessing speed, which meets the demand for indoor localization. The neural network model
we trained explicitly for detecting ArUco code has a breakneck detection speed, taking only
0.164 seconds to detect a single frame. Overall, The proposed method demonstrates a track-
ing accuracy of under 0.5 meters.

In terms of future work, we plan to increase further the number and diversity of datasets,
which will significantly improve the accuracy of the neural network in detecting markers.
This improves the accuracy of vision-based location detection of markers, which in turn
improves the accuracy of our system’s location. We also plan to include hardware devices,
such as depth cameras, in the approach. This will allow our visual localization method to
no longer rely on markers and use objects already present in the indoor environment for
localization.
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9. Appendices

1 public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame

) {

2 Imgproc.cvtColor(inputFrame.rgba(), rgb , Imgproc.COLOR_RGBA2RGB);

3 gray=inputFrame.gray();

4

5 ids = new MatOfInt ();

6 corners.clear();

7

8 Aruco.detectMarkers(gray , dictionary , corners , ids , parameters);

9

10 if(corners.size() >0){

11 Aruco.drawDetectedMarkers(rgb , corners , ids);

12

13 rvecs=new Mat();

14 tvecs=new Mat();

15

16 Aruco.estimatePoseSingleMarkers(corners ,0.025f,cameraMatrix ,

distCoeffs ,rvecs ,tvecs);

17

18 for(int i=0; i<ids.toArray ().length; i++){

19 transformModel(tvecs.row (0),rvecs.row (0));

20 Aruco.drawAxis(rgb , cameraMatrix , distCoeffs , rvecs.row(i),

tvecs.row(i) ,0.01f);

21 }

22

23 MatOfPoint2f mImagePoints = Mat2MatOfPoint2f(corners.get (0));

24 Mat cameraPosition = getCameraPose(mImagePoints , ids.toArray ()[0])

;

25

26 if (cur -prev > 3*1000) {

27 xCoordinates.add(cameraPosition.get(0,0) [0]);

28 yCoordinates.add(cameraPosition.get(1,0) [0]);

29 zCoordinates.add(cameraPosition.get(2,0) [0]);

30

31 prev = cur;

32

33 new Thread(new Runnable () {

34 @Override

35 public void run() {

36 Connection connection = DBOpenHelper.getConnection ();

37 String sql = "INSERT INTO vision1_fifteen (x, y, z)

VALUES (?,?,?)";

38 PreparedStatement preparedStatement;

39 try {

40 preparedStatement = connection.prepareStatement(

sql);

41 preparedStatement.setDouble (1, cameraPosition.get

(0,0) [0]);

42 preparedStatement.setDouble (2, cameraPosition.get

(1,0) [0]);

43 preparedStatement.setDouble (3, cameraPosition.get
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(2,0) [0]);

44 preparedStatement.execute ();

45 preparedStatement.close ();

46 connection.close ();

47 } catch (SQLException throwables) {

48 throwables.printStackTrace ();

49 }

50 }

51 }).start ();

52

53 }

54

55 Imgproc.putText(rgb , "position x" + cameraPosition.get(0,0)[0],

new Point(rgb.cols()/3*2,rgb.rows()* 0.3), Core.FONT_HERSHEY_SIMPLEX

,1.0,new Scalar (0,255 ,0));

56 Imgproc.putText(rgb , "position y" + cameraPosition.get(1,0)[0],

new Point(rgb.cols()/3*2,rgb.rows()* 0.4), Core.FONT_HERSHEY_SIMPLEX

,1.0,new Scalar (0,255 ,0));

57 Imgproc.putText(rgb , "position z" + cameraPosition.get(2,0)[0],

new Point(rgb.cols()/3*2,rgb.rows()* 0.5), Core.FONT_HERSHEY_SIMPLEX

,1.0,new Scalar (0,255 ,0));

58 drawTrajectory ();

59

60 cur = System.currentTimeMillis ();

61

62 }

63 return rgb;

64 }

Listing 14. Code for detecting marker and data collection

1 public List <Corners > markerDetection(CameraBridgeViewBase.

CvCameraViewFrame inputFrame) {

2

3 List <Corners > detectionResult = new ArrayList <>();

4

5 classNames = readLabels("labels.txt", this);

6 for(int i=0; i<classNames.size(); i++) {

7 colors.add(randomColor ());

8 }

9 // Loading network

10 String modelConfiguration = getAssetsFile("yolov3_aruco.cfg", this);

11 String modelWeights = getAssetsFile("yolov3_aruco_final.weights", this

);

12 yolo = Dnn.readNetFromDarknet(modelConfiguration , modelWeights);

13

14 Mat frame = inputFrame.rgba();

15 Imgproc.cvtColor(frame , frame , Imgproc.COLOR_RGB2RGBA);

16 Size frame_size = new Size (416, 416);

17 Scalar mean = new Scalar (127.5);

18

19 Mat blob = Dnn.blobFromImage(frame , 1.0/255.0 , frame_size , mean , true ,

false);

20 yolo.setInput(blob);
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21

22 List <Mat > result = new ArrayList <>();

23 List <String > outBlobNames = yolo.getUnconnectedOutLayersNames ();

24

25 yolo.forward(result , outBlobNames);

26 float confidenceThreshold = 0.5f;

27

28 for (int i = 0; i < result.size(); ++i) {

29 Mat level = result.get(i);

30 for (int j = 0; j < level.rows(); ++j) {

31 Mat row = level.row(j);

32 Mat scores = row.colRange(5, level.cols());

33 Core.MinMaxLocResult mm = Core.minMaxLoc(scores);

34 float confidence = (float) mm.maxVal;

35 Point classIdPoint = mm.maxLoc;

36 if (confidence > confidenceThreshold) {

37

38 int centerX = (int) (row.get(0, 0)[0] * frame.cols());

39 int centerY = (int) (row.get(0, 1)[0] * frame.rows());

40 int width = (int) (row.get(0, 2)[0] * frame.cols());

41 int height = (int) (row.get(0, 3)[0] * frame.rows());

42

43 int left = (int) (centerX - width * 0.5);

44 int top =(int)(centerY - height * 0.5);

45 int right =(int)(centerX + width * 0.5);

46 int bottom =(int)(centerY + height * 0.5);

47

48 Point left_top = new Point(left , top);

49 Point right_bottom = new Point(right , bottom);

50 Point right_top = new Point(left + width , top);

51 Point left_bottom = new Point(right - width , bottom);

52 Point label_left_top = new Point(left , top -5);

53 DecimalFormat df = new DecimalFormat("#.##");

54

55 int class_id = (int) classIdPoint.x;

56 String label= classNames.get(class_id) + ": " + df.format(

confidence);

57 Scalar color= colors.get(class_id);

58

59 Imgproc.rectangle(frame , left_top ,right_bottom , color , 3,

2);

60 Imgproc.putText(frame , label , label_left_top , Core.

FONT_HERSHEY_SIMPLEX , 1, new Scalar(0, 0, 0), 4);

61 Imgproc.putText(frame , label , label_left_top , Core.

FONT_HERSHEY_SIMPLEX , 1, new Scalar (255, 255, 255), 2);

62

63 Corners corners = new Corners ();

64 corners.setLeft_top(left_top);

65 corners.setRight_top(right_top);

66 corners.setLeft_bottom(left_bottom);

67 corners.setRight_bottom(right_bottom);

68 detectionResult.add(corners);

69 }

70 }
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71 }

72 return detectionResult;

73 }

Listing 15. Code for markers detection by yolov3 in Android
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