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Abstract.  GPS is commonly used in outdoor situations due to its strong satellite system. However, GPS encounters difficulties in indoor 
contexts, where the effects of signal blocking and fading can lead to false readings. Using neural networks, this study presented a cost-
effective and autonomous model of a visual tracking system. Using the ArUco code as a starting point, the system was optimized by 
employing the YOLO neural network to increase the accuracy of determining position. The integration of an inertial measurement unit (IMU) 
with a vision-based position estimate was done to achieve seamless tracking results. A Kalman filter model is introduced to predict and update 
detection values in sensor fusion to further optimize the system. This study is based on the principles of visual localization theory and 
coordinate system dimensional transformation and integrates a sensor substitution estimation system. The study refines the dataset and 
incorporates a large experimental set to validate the performance of the new system. The experiments comprehensively evaluate the capability 
and practical prospects of the new system in terms of accuracy, low cost, interference immunity, reliability, and real-time. The new system 
provides enhanced awareness and higher processing efficiency for different types of detection data with the help of neural networks. The 
results show that this optimized combination significantly improves the detection capability of the system under complex conditions. It is 
remarkable that this approach has a minimal additional cost beyond the sensors and intelligent platform and does not rely on any costly 
technologies such as optoelectronic or radiolocation. 
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1. Introduction 
 
Blocked by dense and complex building materials in cities coupled with the fading effect of the signal, GPS performance for the 
accurate positioning of indoor objects is unsatisfactory. This long-standing structural problem in indoor positioning has led to the 
development of indoor positioning techniques based on different principles. From thermal imaging reflectors and military radars 
to bionic acoustic detectors, there is a proliferation of technologies with remote height-tracking capabilities. With the rise and 
development of smart terminals in the new century, there has been a gradual shift towards civilian, low-cost, and portable indoor 
positioning tools. Indoor positioning systems based on smart terminals or mobile devices are widely used in new intelligent living 
scenarios, such as drone navigation, residential security, and virtual reality, among others [1]-[3]. In the spirit of affordability and 
portability, wireless LAN and Bluetooth are widely used for indoor positioning due to their signal wave principle. The former 
system, known as WPS, requires active localization via mobile devices connected to a hotspot. The latter involves the 
interconnection of devices. They are an important class of smart terminals that require a known signal source in advance and 
ensure that the device is within the source, such as the Bluetooth tag and the location of the WLAN [4] [5]. Another example is 
radio frequency identification (RFID), which requires existing RF databases. Or with depth cameras and radar, but this inevitably 
drives up the cost [6]. Integrating multiple technologies to improve system-wide stability and accuracy is a proven approach. A 
good example of this is the use of Google Maps. To compensate for the shortcomings of GPS, access to the user's Bluetooth and 
wireless LAN and the uploading of a rough floor plan of the building by the user are used for multi-point comparison and 
triangulation to obtain a rough indoor location [7]. In practice, however, this presents several challenges such as lack of accuracy 
and privacy of civil buildings [8]. 
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Monocular vision-based, or vision-based, indoor positioning techniques refer to the extraction of information from two-
dimensional images to measure the location in a three-dimensional coordinate system [9]. This localization method is 
straightforward and relatively accurate for indoor tracking. It does not rely on external signal sources or knowledge of the building 
to estimate the location of the observation point. And any camera-equipped smart terminal is capable of achieving this goal. This 
meets the basic requirements of low cost and portability. However, it has been criticized for its drawbacks. One of these is the 
over-reliance on the capture capability of the camera itself. This means that tracking will be completely interrupted when 
environmental conditions are poor, such as low light or obstruction [10]. In addition, the large number of images that must be 
tracked continuously in the form of video frames places a significant burden on image processing. This can lead to problems with 
real-time performance not being guaranteed [11]. This creates resistance to the diffusion of this convenient and potential 
technology. 

 

In order to address the limitations associated with conventional visual localization algorithms, such as their susceptibility to 
interference and limited real-time capabilities, our approach introduces a novel visual localization method based on deep learning. 
By combining neural networks and sensor fusion, we have devised an indoor localization system that offers improved anti-
interference capability and enhanced real-time performance. Leveraging object detection powered by neural networks, we have 
significantly enhanced the accuracy of visual localization while simultaneously achieving efficient real-time feedback. The system 
is specifically designed to operate on smart mobile platforms, paving the way for its widespread implementation in diverse indoor 
smart environments in the coming years. 

 

To translate two-dimensional (2D) image projections into three-dimensional (3D) points in real-world surroundings, we leverage 
the employment of ArUco codes to assist with the localization task. A remarkable advantage of this particular marker lies in its 
capability to furnish sufficient correspondence information to compute the camera's pose [12]. Furthermore, owing to the ArUco 
code's internal binary encoding, the marker maintains distinct stability regarding checks and corrections. To enhance the accuracy 
of marker detection in challenging scenarios involving rapid motion and fluctuations in lighting conditions, we employ neural 
networks. Occasionally, situations may arise during marker detection where the marker remains elusive due to the camera's limited 
field of view. In such cases, we utilize the high acquisition frequency of the cell phone sensor to bridge this gap. Additionally, we 
introduce Kalman filtering to rectify the accumulation of errors in the sensor data. The localization process commences with the 
detection of markers appearing in each video frame, providing us with crucial information such as the marker's ID and the 2D 
coordinates of each corner. The 3D coordinates of the camera are deduced by solving the Perspective-n-Point (PnP) problem. The 
sensors in the system continue to function. The proposed system integrates the accelerometer and gyroscope which allows for the 
determination of the current position. Consequently, this outcome serves to fill in the gaps where no marker detection occurs. 
Ultimately, based on the calculated 3D coordinates of the device, we can plot the device's trajectory and make comparisons with 
other systems. 

 

The main body of this paper is divided into two parts including system design and system testing experiments. The system design 
is divided into seven subparts in logical order: general overview of system structure, camera calibration calculation, YOLO 
detection, camera pose estimation, Motion Tracking Correction, EPnP algorithm, and data set processing. The system test 
experiments are divided into four subparts in logical order: experimental design and requirements, test sets for the original systems, 
test sets for the optimized systems, result analysis, and comparison. The evaluation of the proposed system and conclusion will 
be followed at the end. 

 

2. System Design 
 
    2.1. Overview 

 
The aim of the proposed system is to track and localize objects that are in 3D space and to perform tracing point plotting in real-
time. The parameters of the proposed system come from two main sources: the first one is the camera visual capture frame of the 
mobile device, which should be considered as high frequency uninterrupted. The second aspect comes from the detection readings 
of the sensors. 
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The new system is divided into five units according to different divisions of labor. Figure 1 shows the structure design and modules 
of the system. Each unit in turn includes specific sub-module elements. The first module of the system is camera calibration, 
where parameters such as camera pose, and distance are calculated by transforming the coordinate system to assess the initial 
position of the mobile device in 3D space. YOLO acts as a neural network-based single-stage detector that accepts the input from 
module one and starts detecting the target. This is module two. Its output is the target ID and planar coordinate parameters of the 
subject. Module three appears as an alternative auxiliary module. It is based on the IMU to estimate the distance and trajectory of 
the device from the sensor readings when vision-based detection is not available. The second step of Module III is to input the 
sensor readings into the Kalman filter. The Kalman filter corrects for errors in the previous step with linear predictions and updates. 
This module will continue until the vision-based detection has re-detected the target. At this point, the system moves successively 
to modules four and five. Module four focuses on the conversion of the detection results using the EPnP algorithm to calculate 
the distance and position parameters of the camera. Module 5 consists of a 3D coordinate system and a point plotting system to 
plot the trajectory in real-time. These trajectories are then displayed on the system screen in real-time. These modules will be 
analyzed in the following sections one by one. 

 

 
 

Figure. 1. System Design 

2.2. Camera Parameter Estimation 
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Camera calibration is an essential initial step in machine vision applications. Its purpose is to establish a geometric model of 
camera imaging, enabling the determination of the 3D spatial position of a point on an object's surface and its corresponding 
location in the captured image. The parameters defining this geometric model are known as the camera parameters. Obtaining 
these parameters typically involves a combination of experimental measurements and calculations. This iterative process, 
involving the determination of intrinsic, extrinsic, and distortion parameters, is commonly referred to as camera calibration [13]. 
 
Converting the world coordinate system to the camera coordinate system is the initial step in camera calibration. The world 
coordinate system (𝑥$, 𝑦%, 𝑧%), which is also referred to as the measurement coordinate system, enables the description of the 
spatial position of both the camera and the object being measured. The placement of the world coordinate system can be flexibly 
determined based on the specific circumstances. On the other hand, the camera coordinate system (𝑥&, 𝑦&, 𝑧&) is also a three-
dimensional right-angle coordinate system, with its origin located at the optical center of the lens. The 𝑥 and 𝑦 axes run parallel 
to the sides of the image plane, while the 𝑧-axis represents the lens optical axis and is perpendicular to the image plane. Equation 
(1) illustrates the process of conversion. 

 
     	

2

𝑥&
𝑦&
𝑧&
1
4 = 6𝑹 𝒕

0 1: 2

𝑥%
𝑦%
𝑧%
1
4                                                                                  (1) 

 

in the homogeneous matrix 6𝑹 𝒕
0 1:, 𝑹 represents the rotation matrix (3 × 3), 𝒕 represents the translation vector (3 × 1 column 

vector), (𝑥& , 𝑦& , 𝑧& , 1)' and (𝑥% , 𝑦% , 𝑧% , 1)'  are the homogeneous coordinates of an object in the camera coordinate system and 
the world coordinate system, respectively. 
 
 

  
Figure. 2. The Pinhole Imaging Principle in Image Coordinate System and Pixel Coordinate System 

The conversion of pixel coordinates and image coordinates is the subsequent step after determining the object's position in the 
camera's coordinate system. Figure 2 illustrates the pixel coordinate system, 𝑢𝑜𝑣, which represents the arrangement of pixels on 
the camera chip. It is a two-dimensional right-angle coordinate system with its origin, 𝑜, located in the upper left corner of the 
image. The 𝑢 and 𝑣 axes align with the image plane's sides, respectively, and their units are pixels. 

In the image coordinate system (𝑋𝑂𝑌), the axes are typically measured in millimeters (mm), and the origin coincides with the 
intersection of the camera's optical axis and the phase plane, known as the principal point and positioned at the center of the image. 
The 𝑋 -axis and 𝑌 -axis of the image coordinate system are parallel to the 𝑢 -axis and 𝑣 -axis, respectively. Therefore, the 
relationship between these two coordinate systems is translational, 
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where 𝑑𝑋  and 𝑑𝑌  represent the physical dimensions of a pixel in the 𝑋  and 𝑌-axis directions, respectively, and 𝑢*  and 𝑣* 
correspond to the coordinates of the principal point. 
Perspective projection, as demonstrated by the matrix below, involves the relationship between a point 𝑃 (with coordinates in the 
camera's local reference frame [𝑥& , 𝑦& , 𝑧&]') in 3D space and its corresponding image point 𝑝, as depicted in Figure 2. The line 
connecting 𝑃 and the optical center 𝑜, of the camera is referred to as 𝑜,𝑃. The projection of point 𝑃 onto the image plane 𝑝 occurs 
at the intersection of 𝑜,𝑃 and the image plane. 
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where the effective focal length, 𝑓, represents the distance from the optical center to the image plane, and 𝑠 represents the nonzero 
scale factor. (𝑥& , 𝑦& , 𝑧& , 1)' represents the camera local reference frame (𝑥𝑜𝑦) homogeneous coordinates of the 3D point 𝑃, and 
(𝑋, 𝑌, 1)' represents the image coordinate system (𝑋𝑂𝑌) homogeneous coordinates of the image point p.  
Therefore, the equation below serves as a representation of the geometric model of camera imaging, encompassing the camera's 
intrinsic and extrinsic parameters, 
  

                                                                   𝑠 J
𝑋
𝑌
1
K = 𝑀!𝑀"𝑋%                                                                             (4) 

 

where, the intrinsic parameter is 𝑴! = J
𝑎- 0
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, and the extrinsic parameter is 𝑀" = 6𝑹 𝒕
0 1:. 

 

2.3. Monocular Vison Detection 
 

The principle of vision-based detection was implemented in Module 2. As a single-stage detector with excellent performance in 
terms of processing efficiency, YOLO meets the required real-time performance of the proposed system [14][15]. For object 
detection, YOLO automatically resizes the image into small square grid with side lengths of 52, 26, and 13 to segment small, 
medium, and large targets, respectively, for different sizes. However, at initial input, the image is first resized to a 416*416 grid. 
This determines the lower limit of the object size and the upper limit of the detection distance. Each smaller grid will be responsible 
for the detected objects it contains. 
 
YOLO Training. We train the YOLOV3 on Google Colab. The framework we use is Darknet, which we use to train our custom 
dataset. In the first step, we need to modify the file that defines the network structure according to our self-define dataset. Since 
our dataset contains only one category, which is the ArUco code, the corresponding number of filters can be calculated as 18 
according to the formula below. 

 
𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) ∗ 3 

 
where filters and classes indicate the number of filters and classes. After uploading the dataset and the corresponding files to 
Google Colab, we can start training the model. A weight file is obtained at the end of training and will be used in the process of 
detecting markers. 
 
Markers Detection in Android. After training the neural network, our task becomes to make the neural networks detect markers 
on the phone. We use OpenCV to help with this task. First, we need to add OpenCV as a dependency of the project. This step was 
done in the previous camera calibration. Place the weight file obtained after training into the Android project and load the weight 
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file with the function getAssetsFile (). The next step is to pass the camera frame into the network for detection. Finally, the 
coordinate points of the four corners of the detected markers are returned. 
 
Detecting Test. We use 200 images in the dataset, as a test set to validate the detection performance of YOLOV3. The test set 
has 200 files and contains 784 ArUco code markers. Then we use the YOLOV3 to detect the test set. The detection results show 
that out of 784 objects to be detected, 368 were detected incorrectly. 
 
Evaluation Metrics. Based on the above detection results, we can then evaluate the neural network model we have trained. We 
use mean Average Precision(mAP) to evaluate our training result. Before that, we need to introduce 
a few metrics. 
 

1) Precision. Precision measures how accurate is model’s predictions. i.e., the percentage of the model’s prediction is 
correct 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 

2) Recall. Recall measures how a good model finds all the positives. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

    
 

3)  IoU. IoU stands for intersection over unity. The overlap of two borders is measured by IoU. We use this to determine 
how many of the models' predicted boundaries overlap with the actual object boundary. 
 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎𝑂𝑓𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎𝑂𝑓𝑈𝑛𝑖𝑜𝑛  

( 
4) AP (Average precision). AP calculates the average precision value for recall values ranging from 0 to 1. The area under 

the precision-recall curve is the general definition for the AP. Precision and recall are always in the range of 0 to 1. As 
a result, AP is also between 0 and 1. 

𝐴𝑃 = h 𝑝(𝑟)𝑑𝑟
!

*
 

 
5) mAp. The mAp is the average of AP. Since we only have one class which is the ArUco code, so mAp is equal to AP. 

 
 Result.  Figures 3 show the precision, recall, and mAP of our trained model, respectively. As can be seen from the results, our 
model has achieved a 99.87% mAP. This detection accuracy is high and satisfies our requirements of marker detection for indoor 
localization. 
 

 
a) Precision                                                  b) Average Precision                                                c) Recall 

 
Figure.3. The Performance of Our Trained Model 
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2.4. Camera Pose Estimation 

 
The unique ID and 2D coordinates of the subject obtained from the visually tracked video frame will be used as input for the pose 
estimation of the mobile device. The pose estimation of the device mainly makes use of the Perspective n Point algorithm. The 
usual algorithms are broadly classified into iterative and non-iterative types. n general conditions exist for the PnP algorithm [16], 
i.e., there are n 3D reference points in the 3D earth coordinate system and these reference points can be projected on the captured 
image. 
 
The full name of the EPnP algorithm is Efficient Perspective-n-Point, a scheme that expresses the camera coordinates of the 
reference points as a weighted sum of the control points, and then transforms the problem into a solution to the camera coordinate 
system of these four control points [17]. For the non-planar case, four non-coplanar control points are required, whereas for the 
planar case, only three are required. In contrast, in most PnP algorithms, the depth of the feature points is often the first object to 
be solved. Barycentric points will be used to calculate the final center coordinates to obtain the specific tilt angle. The process of 
this algorithm and its comparison with the conventional PnP algorithm is discussed in detail in 2.7 of this chapter. It is worth 
stating that EPnP meets the requirements of the new system as an algorithm belonging to a relatively fast processing speed. This 
can also be demonstrated in the subsequent experiments. 
 

2.5. Sensor Fusion 
 
  
Role of Inertial Measurement Unit (IMU). The IMU is a sensor that monitors the acceleration and angular velocity of each axis 
of the 3D coordinate system. It mainly consists of an accelerometer and a gyroscope. The former provides linear acceleration in 
all directions of the coordinate system. The latter outputs angular velocity. It monitors acceleration, angular velocity, and magnetic 
field and estimates motion, direction, and heading by interfacing with sensor fusion software [18][19]. It is worth mentioning that 
sensor fusion can be done by relying on the smartphone's original firmware. In the newly designed system, we have focused on 
providing a solution to the situation where visual detection is temporarily "blinded" in adverse environmental conditions. In this 
case, sensor fusion is proposed as a supplementary solution. This physical detection, which does not rely on camera or electronic 
platform processing, will be an important part of the new system. 
 
Coordinate System Conversion. Converting the coordinate system of an Android phone's acceleration sensor is essential for 
accurate acceleration measurements. To achieve this, we must transform the phone's coordinate system into an inertial, non-
rotating coordinate system known as the Earth coordinate system. By performing this conversion, we enable the Android phone 
to accurately measure acceleration vectors regardless of its orientation, allowing for precise calculation of the phone's trajectory 
within the Earth coordinate system. The transformation from the phone's coordinate system to the Earth's coordinate system, as 
depicted in the formula below [20], accomplishes this conversion. 
 

𝒂% = 𝑹0(𝜓)𝑹.(𝜃)𝑹-(𝜙)𝒂1                                                                          (5) 

where 𝒂1 = m𝑎1- , 𝑎1
., 𝑎10n

'
 represents the phone’s linear accelerations in its local reference frame, 𝒂% = m𝑎%- , 𝑎%

. , 𝑎%0 n
'
 

represents the phone’s acceleration in the world reference frame, and 𝑹0(𝜓), 𝑹.(𝜃), 𝑹-(𝜙) represent the rotation matrices, and 
Euler angles (𝜓, 𝜃,𝜑) correspond to the pitch, roll, and yaw as shown in Figure 4. 
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Figure.4. Mobile Phone Local Reference Frame 

 
Due to the differences between the smartphone platform and the general coordinate system (Earth), we need to convert the 3D 
reference standard. Figure 5 shows the difference in the comparison of accelerometer readings after the coordinate system has 
been converted from the general to the mobile phone coordinate system. 
 
According to Newton's laws, the acceleration of gravity is approximately 10m/s to the nearest single digit, while the horizontal 
direction should not have an acceleration in the absence of external forces. Here, the values on the X.Y.Z axes behave in 
accordance with Newton's laws as presumed. 
 

 

Figure. 5. Change in Sensor Readings Before and After 3D Reference System Transformation 

(Grey for Pre-application and Green for Post-application) 
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Figure.6. Noise Spectrum of Each Axis 

 

 
Figure.7. Accelerometer Values before and after the Low-pass Filter be Applied.  

(Grey for Pre-application and Green for Post-application) 
 
Noise Filtering: To estimate the distance traveled each time, the acceleration needs to be integrated twice[21]. It is important to 
note that the integration of the noise also needs to be considered. Its value has a potential impact on the error of the results in the 
3D coordinate system. However, we are not sure what type of filter needs to be used at this point. Therefore, as an attempt a low-
pass filter was introduced to attenuate the noise. The accelerometer readings were subjected to Fourier analysis to obtain the 
spectrum of the noise. Figure 6 shows the noise spectrum in each direction of the coordinate system. It shows that the noise has 
been concentrated in the low-frequency band, and it looks like we should use a high-pass filter to be the right choice. However, 
the signal we are supposed to measure is also concentrated in the low-frequency band, so a low-pass filter is a genuinely right 
choice. Using a lowpass filter can make the signal smoother. Figure 8 shows the variation of the acceleration values after the low-
pass filter. An acquisition frequency of 100 Hz was used in the test of Figure 7. The x-axis is the IMU reading, and the y-axis is 
the number of samples taken. As can be seen from Figure 7, the values on each axis are attenuated, which corresponds to a partial 
attenuation of the noise. 
 

2.6. Motion Tracking Correction 
 
When sensor fusion is activated as an auxiliary system, the primary sensors such as the accelerometer and gyroscope are the first 
to start operating and providing raw readings. Errors in the raw readings due to the sensors themselves may be accumulated after 
two integrations of the measured distance. Therefore, we introduce Kalman filtering [22] to correct for this. It is divided into two 
main parts. The first part is the prediction, which refers to the extrapolation of the current stage value from the raw readings of 
the previous stage. The second part is updating, which refers to linear iteration to estimate the optimal solution based on the 
obtained values of the current stage combined with the values of the previous stage [23]. This process is repeated at the next stage 
to update and correct. As the proposed system seeks a certain processing speed, this approach, which does not need multiple 
parameters but only process quantities, excellently matches the needs of the new system. 
 
The process of constructing the Kalman filter state space for this project is described in detail below. The position and velocity 
of the device at moment t can be deduced from the position and velocity at moment t − 1. 
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𝑷2 = 𝑷23! + 𝑽23! × 𝛿𝑡 +
42!

"
𝒂%2                                                                    (6)     

  𝑽2 = 𝑽23! + 𝛿𝑡 × 𝒂%2                                                                               (7) 
 

Where P, V, a, and δt, are position, velocity, acceleration, and time interval, respectively. Combining equations (6) and (7), in a 
three-dimensional coordinate system, we can obtain, 
 

               𝑿t23 = 𝑨𝑿t23 +𝑩𝒂2                                                                                    (8) 
 
Where A is the state transition matrix, B is the control matrix, 𝑎2 is the acceleration at moment t. 
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Thus, the measurement matrix is 

J
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

K 

 
 

2.7.  EPnP Algorithm 
 
We used PnP's coordinate system conversion method during the camera calibration section. In this section will further explain 
its role and verify the superiority of EPnP in the experiments.  
 
EPnp, or Efficient Perspective n Point, is an optimization solution for estimating camera angles. It uses a non-iterative approach 
to estimate the camera pose from a correspondence of n 3D to 2D points. [24]. We need to verify that the EPnP algorithm is 
superior to other PnP algorithms. Therefore, we designed this experiment to compare the difference in accuracy and speed of 
computation between EPnP, P3P, and Iterative algorithms. In this experiment, the origin of our world coordinate system is the 
center of the marker, with the X-axis pointing to the right, the Y-axis pointing up, and the Z-axis facing outward perpendicular 
to the wall. We took pictures of different markers from different angles (Front, below, above, left, and right side) and different 
distances (0.6, 1.2, 1.8, 2.4 meters), and noted the camera’s position at the time the picture was taken. Then, we use three different 
methods -EPNP, P3P, and Iterative - to calculate the camera position in world coordinates. Therefore, the camera had a total of 
20 different positions, and we took 30 images for each of these different positions and then performed thirty experiments for each 
position to calculate the average error. Figure 8 shows the error comparison of different PnP algorithms for calculating mobile 
devices at different angles and different distances. 
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a) Front                                                                     b) Below 

 
c) Above                                                                      d) Left 

 

 
e) Right 

 
Figure.8. Comparison of the Different Algorithm’s Average Localization Error in Different Angles 

 
Figure 8a) compares the average error of different algorithms for estimating the camera position at different distances when the 
mobile device is located directly in front of the marker. The Iterative and P3P algorithms perform similarly, with the EPnP 
algorithm showing a clear advantage. The errors of all three algorithms increase with increasing distance. Figure 8b) shows the 
performance of the different algorithms when the camera is located directly below the marker. The error of the three algorithms 
still increases with distance, and the performance of the three algorithms is very similar. However, the EPnP algorithm still has a 
slight advantage. Figures 8c) and 8d) show the comparison of the errors in estimating the camera position by different algorithms 
when the marker is located directly above the camera and to the left of the marker, respectively. The errors of the P3P and Iterative 
algorithms are very similar when estimating these two different angles, and the error curves almost overlap. Again, the computed 
error is positively correlated with the distance. EPnP algorithm has an obvious advantage over the other two algorithms. Figure 
8e) compares the performance of different algorithms when the camera is on the right side of the marker. The difference between 
here and the previous one is that the EPnP algorithm is not significantly affected by the distance. 
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Table I. Average Performance Comparison of Different PnP Algorithm 

 
Algorithm Time (𝒎𝒔) 

EPnP 223.658 
P3P 657.869 

Iteration 1110.194 
 
As can be seen from these experimental results, the computational error of each algorithm increases with the distance. The reason 
is that when the marker is farther away from the camera, the smaller imaging area on the image. The x, and y coordinate 
information in the physical world becomes a minimal number of pixels in the image. This causes an error in the z-axis position. 
The closer the marker is to the camera, the larger the imaging area and the greater the accuracy. In addition, the lighting condition 
at the time the photo was taken can also affect the calculation results. In general, the EPnP algorithm has the slightest error and 
the superiority of the EPnP algorithm is better demonstrated when the distance is farther. Besides, we also performed performance 
tests on the three algorithms. We executed the same program 1000 times with each of the three algorithms to obtain the running 
time of the algorithms. Table I shows the results of the three different algorithms. From the results, the EPnP algorithm is the 
fastest, followed by the P3P algorithm. The iterative method is the slowest. 
 

2.8. Dataset   
 

 
Figure.9. Dataset Structure 

 
Data Collection. In this project, we need to collect our own dataset because there is no open-source dataset available. The dataset 
usually consists of a training set and a test set. In general, the total number of training sets is greater than the total number of test 
sets.  
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Due to the fast movement of the camera, some problems may occur in the test set, such as blurred images caused by the fast 
movement of the camera. Therefore, the dataset should also include images with blurred markers. To meet these requirements, 
we first took many images and then further processed them. We used a combination of Python and OpenCV to add image effects. 
 
Data Tagging. In machine learning, data labeling is defined as a form of data processing that enables information marking and 
information recognition of the original data [25]. Specifically, the tracking of a specific object in a specific image and the filtering 
of audio or video content features can be scenarios in which it can be put to great use. A tag in a neural network is a visual 
identifier that uses Qt as a graphical intervention [26]. 
 
Labeling [27]-[29] supports the YOLO format. For each image file in the same directory, a file with the same name is created in 
the YOLO dataset format. Each file comprises the picture file that corresponds to the object class, object coordinates, height, and 
width. The result of the labeling can be saved as an XML file or as a TXT file. This labeling process requires us to manually 
mark the boxes that surround the markers. After drawing a box each time, we must mark what object the box belongs to. After 
finishing the labeling of one image, we can import the following images and cycle through them. Images are classified according 
to their different conditions, such as illumination and blur. Four-fifths of the total data set is used for training and one-fifth for 
testing. As can be seen from Figure 9, this dataset does not have a validation set. The reason is that the validation set is 
automatically divided from the training set at the beginning of the model training. The test set is needed to evaluate the model 
performance. Figure 9 illustrates the data set structure. 
 
 

3. Experimental Performance Testing 
 
The theoretical logic of the proposed system needs to be supported by practical experiments. In order to quantify the innovative 
performance of the new system compared to traditional vision tracking systems or sensor positioning systems, a series of 
experiments were designed to quantify the performance and verify the effectiveness of the improvements. 
 
First, we divided the experimental groups into three categories: vision-based localization systems, sensor fusion-based localization 
systems, and the proposed new system. There are 15 experimental groups for each type of experiment. The results of the 
experiments will be subjected to data analysis. 
 
The location where this experiment will be conducted is the Prairie Springs Science Centre at University. The tools to be used 
include a Nokia 7.2 as the intelligent example platform for the experiments and a tape measure. The ArUco code was measured 
accurately and attached to the walls of the laboratory at different heights and orientations. A corner of the laboratory is shown in 
Figure 10 as an example. During the experiment, a partially illuminated, shaky, and noisy environment was deliberately designed 
to test the impact of several indicators of the new system and to assess its resistance to interference.  
 
Figure 11 shows a top view of the experimental environment. The experiment will follow the route shown in Figure 11. The six 
yellow dots as selected key points will be used in subsequent test sections for examples of data collection. In addition, we have 
introduced six high-frequency depth cameras which will cover the experimental area and ensure the relative accuracy of the real 
trajectory. 
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       Figure.10. The Environment of the Laboratory                      Figure.11. The Walking Route Design for the Experiment 
 

Figure 12 shows the trajectory of the real movement made by tracing the points. Like the green arrows can be seen in Figure 11, 
the real path consists of three planes and two corners. Movement in the vertical direction is also included in the 3D trajectory. 
The maximum movement distance for horizontal movement is approximately 11.83 m, while the upper limit in the vertical 
direction is 6.53 m. At the same time, six high-frequency depth cameras were introduced, which will cover the experimental area 
and examine the 3D trajectory points to ensure the relative accuracy of the real trajectory. 

 
 

 
Figure.12. Actual 3D Moving Trajectory Drawing 
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                         a) Sensor Fusion-based                                                                    b) Vision-based method 
 

Fig. 13. Fifteen Trajectories Obtained by Sensor Fusion-based Method and Vision-based Method. 
 
 

 
                                          a) Sensor Fusion-based                                                 b) Vision-based  

 
Fig. 14. Comparison of Real Trajectory and Trajectory Obtained by Sensor Fusion-based method and Vision-based Method. 

 
Figure 13A and Figure 14A show the 3D trajectory and 2D trajectory of the sensor fusion system in fifteen sets of experiments 
(here in the Z-direction), respectively. The 2D trajectories are compared to the real trajectories to show the offset. In Figure 13A 
the 3D trajectories are shown in different colors for different groups of experiments. We can see that they clearly diverge from 
the original trajectory as the distance from the position increases. This reflects the instability of the system under this approach. 
A comparison with the real trajectory in Fig. 14A shows a large discrepancy, with relatively large shifts in direction and position. 
The reason for this phenomenon is mainly due to the structure of the IMU itself, which has a certain amount of unavoidable drift 
during the testing process. Further, the sensor has non-zero readings due to the inertia of the moving object as it returns to rest 
from movement. In addition, the presence of gravitational acceleration in the vertical direction will also have an effect on the 
sensor readings, which cannot be completely avoided. The use of double integration when calculating distances adds to this error. 
 
Figure 13B and Figure 14B show the trajectory performance of a conventional vision tracking system in 3D and 2D (Z-direction 
for example) respectively. Again, its 2D trajectory is compared with the real trajectory. In the 3D trajectory in Figure 13B, the 
different groups of experiments are indicated by different colors. Each group of trajectories does not appear to deviate excessively 
in general and follows a relatively consistent direction. Figure 14B shows that the trajectories (green) have some degree of 
fluctuation and bulging. This is because visual capture failed in some experimental groups with poor environmental factors, which 
resulted in marker positions not being accurately estimated. Therefore, until the next valid visual point is captured, the position 
will be transiently shifted to the existing point. This is also the reason why some of the unexpected fluctuations in the figure were 
generated. This reflects at a deeper level the weak resistance of the original system to disturbances, especially when the visual 
situation is poor, which is exactly what the optimized system needs to achieve. 
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Fig.15. 3D Trajectory Obtained by our System            Fig.16. Comparison of Proposed System Trajectory with Real Trajectory 

The third part of the experiment was to evaluate our proposed method and test the reliability and validity of our system. Figure 
15 shows the 3D trajectories for fifteen repetitions of the experiment in different conditions. Figure 16 points out that there are 
no large jumps in the trajectories obtained, which means that sensor-based localization successfully fills the gap when vision-
based localization cannot be used. This largely suggests that this method combines the advantages of both methods and achieves 
optimization. 
 
Figures 15 and 16 show the performance of the proposed method for both the 3D trajectory and the 2D trajectory (in terms of Z 
position). By comparing the 3D trajectory in Figure 15 with Figure 13 it can be seen that the trajectory is much tighter for the 
different experiment sets in Figure 15. This implies an improvement in the stability of the system. The disappearance of gaps 
and jumps indicates that the gaps in its visual detection are effectively filled by the sensor. In terms of qualitative analysis, these 
signs become relatively strong evidence of the success of the optimization. 
 
The next step in the experiment is to quantify the scale of this optimization to comprehensively measure the extent of this 
improvement. 

 

 Table II. Localization Results by Using Different Methods                     

No. Real Proposed System Vision-based Sensor-based 

1 
-1 -1.4011 -1.6379 -8.9199 

-0.15 -0.5655 1.0470 -2.2626 
1 -1.3943 1.3849 -3.8799 

2 
1 1.3202 2.0098 -6.4524 

-0.2 -0.5938 1.6148 -2.3476 
0.8 1.1437 1.3625 -2.8963 

3 
7 7.3121 7.8599 0.3548 
0 0.4543 1.1423 -1.3658 
4 4.1368 5.2847 1.8462 

4 
4 4.4975 2.9463 -3.4625 

1.2 1.6831 2.2486 -2.3746 
10 10.4304 10.2109 0.4625 

5 
0.6 1.1250 2.1186 -7.3624 
1 1.3554 2.2250 -2.4762 

9.5 10.3051 10.1139 5.7264 
 
 

Table III. Localization Errors Comparison 
No. Proposed System Vision-based Sensor-based Impr1 Impr2 



                                                                                         
 

 17 

1 
0.4011 1.3621 7.9199 71% 95% 
0.4155 1.1030 2.1126 69% 80% 
0.4057 1.6159 4.8799 75% 92% 

2 
0.4798 1.0980 7.4524 56% 94% 
0.4062 1.8148 2.1476 78% 81% 
0.4675 1.4375 3.6963 67% 87% 

3 
0.4897 1.1401 6.6452 57% 93% 
0.4543 1.1423 1.3658 60% 66% 
0.6632 1.2847 2.1574 48% 69% 

4 
0.4975 3.0537 7.4625 83% 93% 
0.4831 1.0486 3.5746 54% 86% 
0.4304 1.7810 9.5375 76% 95% 

5 
0.5250 1.5186 7.9624 65% 93% 
0.4446 1.2250 3.4762 64% 87% 
0.8051 1.3864 3.7736 42% 79% 

* Units in meters 
 
Table II shows the example of location results evaluated at the selected positions (as indicated in Figure 11). The yellow dots in 
Figure 11 represent these selected points. The location error comparison of our proposed method, vision-based method, and 
sensor fusion-based method is shown in Table III.  
 
Through observation, the experiments revealed that the error range of the sensor fusion system fluctuated between 1.36-9.53m, 
and the error value of the conventional vision-based localization system fluctuated between 1.04-3.05m but was always greater 
than the proposed system. The proposed approach outperforms the competition in terms of tracking precision, with a mean error 
calculated to be 0.4912 meters approximately.  
 
On average, the proposed system improves by approximately 66% on the X-axis, 65% on the Y-axis, and 62% on the Z-axis 
compared to systems with conventional vision tracking. In addition, our proposed method shows a notable improvement 
compared to sensor-based methods. The improvement is about 94% accuracy on the X-axis, about 80% on the Y-axis, and 84% 
on the Z-axis. The tracking errors of these fifteen experiments on the three axes are demonstrated in Figure 17a), figure 17b), 
and Figure 17c), respective to X, Y, and Z axes.   
 

 
a) X-axis.                                                                    b) Y-axis 
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                                            c) Z-axis 

 
Figure.17. Errors in the 3D-coordinate system for Different Localization Methods 

 
 
By comparing the three previous trajectory maps, the experiments demonstrate a closer fit of the proposed system to the original 
trajectory, which differs from the relatively large gap based on traditional vision-based fluctuations and sensor fusion. this is a 
linear qualitative analysis. By quantifying the tabular data for each of the 15 test groups of the approach, it was found that the 
maximum error of the new system was 0.8051m, while the mean was approximately 0.4912 meters, a visible improvement for 
both the sensor fusion-based localization system with an average error of 4.94426 meters and the conventional vision-based 
tracking system with an average error of 1.467 meters. This is reflected in all three axes. Interestingly, the experiments also 
revealed that the system seemed to perform unusually in the Y direction compared to the other axes. Additional tests were 
conducted to explore this near-arc trajectory and two possibilities were speculated: the first was that the effect of gravitational 
acceleration on the sensor could not be eliminated, which was brought about by the IMU; the second was due to the small 
relative distance of the vertical targets in the experiments, which caused an offset in the number of detections. But overall, it is 
undeniable that the new system has passed a series of tests on interference and poor environments, and that its strength and 
robustness have been relatively improved compared to the original system. 
 
 

4. Conclusion And Future Direction 
 

In summary, this work combines traditional monocular visual localization with sensor fusion. The experiments conducted point 
out that this combination complements the detection shortcomings when the visual environment is poor, which greatly enhances 
the environmental immunity of the new system. In this process, the integrated YOLO neural network performs marker detection 
and uses the ArUco code as a reference point, significantly reducing the probability of error through the collection of data sets. 
On the other hand, IMU localization and Kalman filtering for sensor fusion are integrated as part of the auxiliary system to fill 
the marker detection gap. The excellent prediction and updating capabilities of the Kalman filter improve the detection abilities 
of the proposed system. Our extensive experiments illustrate that a 64.5% improvement in tracking accuracy is achieved over 
conventional vision tracking and an 86% improvement is achieved over sensor detection. The average target processing speed of 
the new system is around 0.1638 seconds, which maintains the high speed and real-time nature of visual localization. The system's 
impressive tracking accuracy of 0.5m or less can be achieved without the need for expensive depth cameras or LIDAR technology, 
making it a cost-effective solution with potential applications for affordable indoor tracking methods, particularly on smartphone 
platforms. 

 

The application prospects of the new system are expectable based on excellent performance in the test phase. There are still some 
optimization parts that can be completed in the future. On the one hand, diverse reference codes and new versions of the YOLO 
neural network may be used to compare and validate the most suitable solutions for the proposed new system. On the other hand, 
more extensive datasets will be collected to improve the labeling accuracy of the neural network. This will help to improve the 
overall stability and accuracy of the new system. 
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